Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = radial-median crack

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 24143 KB  
Article
An Investigation into the Densification-Affected Deformation and Fracture in Fused Silica under Contact Sliding
by Changsheng Li, Yushan Ma, Lin Sun, Liangchi Zhang, Chuhan Wu, Jianjun Ding, Duanzhi Duan, Xuepeng Wang and Zhandong Chang
Micromachines 2022, 13(7), 1106; https://doi.org/10.3390/mi13071106 - 14 Jul 2022
Cited by 4 | Viewed by 2614
Abstract
Subsurface damage of fused silica optics is one of the major factors restricting the performance of optical systems. The densification-affected deformation and fracture in fused silica under a sliding contact are investigated in this study, via three-dimensional finite element analysis (FEA). The finite [...] Read more.
Subsurface damage of fused silica optics is one of the major factors restricting the performance of optical systems. The densification-affected deformation and fracture in fused silica under a sliding contact are investigated in this study, via three-dimensional finite element analysis (FEA). The finite element models of scratching with 70.3° conical and Berkovich indenters are established. A refined elliptical constitutive model is used to consider the influence of densification. The finite element models are experimentally verified by elastic recovery, and theoretically verified by hardness ratio. Results of densification and plastic deformation distributions indicate that the accuracy of existent sliding stress field models may be improved if the spherical/cylindrical yield region is replaced by an ellipsoid/cylindroid, and the embedding of the yield region is considered. The initiation sequence, and the locations and stages of radial, median, and lateral cracks are discussed by analyzing the predicted sliding stress fields. Median and radial cracks along the sliding direction tend to be the first cracks that emerge in the sliding and unloading stages, respectively. They coalesce to form a big median–radial crack that penetrates through the entire yield region. The fracture behavior of fused silica revealed in this study is essential in the low-damage machining of fused silica optics. Full article
(This article belongs to the Special Issue Frontiers in Ultra-Precision Machining, Volume II)
Show Figures

Figure 1

17 pages, 52239 KB  
Article
Study on Damage of 4H-SiC Single Crystal through Indentation and Scratch Testing in Micro–Nano Scales
by Peng Chai, Shujuan Li, Yan Li and Xincheng Yin
Appl. Sci. 2020, 10(17), 5944; https://doi.org/10.3390/app10175944 - 27 Aug 2020
Cited by 26 | Viewed by 4739
Abstract
In this paper, a series of indentation tests in which the maximum normal force ranged from 0.4 to 3.3 N were carried out to determine the fracture toughness of 4H-SiC single crystals. The results indicated that an appropriate ratio of the distance from [...] Read more.
In this paper, a series of indentation tests in which the maximum normal force ranged from 0.4 to 3.3 N were carried out to determine the fracture toughness of 4H-SiC single crystals. The results indicated that an appropriate ratio of the distance from the indentation center to the radial crack tip to the distance from the indentation center to the indentation corner is significant to calculate fracture toughness of 4H-SiC single crystals. The critical condition with no cracks on the edge of the indentation was obtained through a fitting method. The surface morphologies of the groove were analyzed by scanning electron microscopy (SEM). Plastic deformation was observed and characterized by the smooth groove without cracks and ductile chips on the edge of the groove in the initial stages of scratch. With increased normal force, median cracks, radial cracks, and microcracks appeared in turn, followed by the crack system no longer being able to stably extend, causing the brittle fracture to dominate the material removal. The size of the edge damages were measured through SEM and the experimental data highly agreed with the predicted curve. A modified calculation model considering elastic recovery of the sample by the indenter during the scratching process was suggested. These results prove that elastic recovery of 4H-SiC single crystals cannot be ignored during ultra-precision machining. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

16 pages, 5513 KB  
Article
Vickers Indentation Fracture Toughness of Near-Nano and Nanostructured WC-Co Cemented Carbides
by Tamara Aleksandrov Fabijanić, Danko Ćorić, Mateja Šnajdar Musa and Matija Sakoman
Metals 2017, 7(4), 143; https://doi.org/10.3390/met7040143 - 19 Apr 2017
Cited by 33 | Viewed by 8134
Abstract
In this paper, the fracture toughness KIc of near-nano and nanostructured WC-Co cemented carbides by Vickers indentation fracture toughness (VIF) was investigated. The aim was to research the type of cracking occurring in near-nano and nano-grained WC-Co cemented carbides with respect to [...] Read more.
In this paper, the fracture toughness KIc of near-nano and nanostructured WC-Co cemented carbides by Vickers indentation fracture toughness (VIF) was investigated. The aim was to research the type of cracking occurring in near-nano and nano-grained WC-Co cemented carbides with respect to the Co content and, consequently, to evaluate the appropriateness of different models for the fracture toughness calculation. The mixtures with different binder content—4, 6, and 9 wt. % Co—were consolidated by sintering in a hydrogen atmosphere. Vickers indentation using a test force of 294 N was used for the determination of fracture toughness. The type of crack that occurred as a consequence of the applied load on the corners of the Vickers indentations was analysed with optical microscopy before and after repolishing the samples. Different crack models, Palmqvist and radial-median, were applied for the calculation of KIc. Instrumented indentation testing was used to determine the modulus of elasticity of the consolidated samples. From the research it was found that near-nano and nanostructured cemented carbides with 9 and 6 wt. % Co do not exhibit median cracking and the indenter cracks remain radial in nature, while near-nano and nanostructured cemented carbides with 4 wt. % Co exhibit both radial and median cracking. Accordingly, it was concluded that the critical amount of the binder phase in near-nano and nanostructured WC-Co at which the crack changes its geometry from Palmqvist to radial-median is around 4 wt. % Co. Comparing different models it was found that KIc values are not consistent and differ for each method used. Models from Exner crack resistance for the Palmqvist crack showed good agreement. Radial-median crack models showed significant KIc deviations for the same testing conditions for all samples. Full article
(This article belongs to the Special Issue Cermets and Hardmetals)
Show Figures

Figure 1

Back to TopTop