Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = radial ultrasonic rolling electrochemical micromachining (RUR-EMM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8654 KiB  
Article
Analysis of Flow Field and Machining Parameters in RUREMM for High-Precision Micro-Texture Fabrication on SS304 Surfaces
by Wenjun Tong and Lin Li
Processes 2025, 13(8), 2326; https://doi.org/10.3390/pr13082326 - 22 Jul 2025
Viewed by 295
Abstract
Micro-textures are crucial for enhancing surface performance in diverse applications, but traditional radial electrochemical micromachining (REMM) suffers from process complexity and workpiece damage. This study presents radial ultrasonic rolling electrochemical micromachining (RUREMM), an advanced technique integrating an ultrasonic field to improve electrolyte renewal, [...] Read more.
Micro-textures are crucial for enhancing surface performance in diverse applications, but traditional radial electrochemical micromachining (REMM) suffers from process complexity and workpiece damage. This study presents radial ultrasonic rolling electrochemical micromachining (RUREMM), an advanced technique integrating an ultrasonic field to improve electrolyte renewal, disrupt passivation layers, and optimize electrochemical reaction uniformity on SS304 surfaces. Aimed at overcoming challenges in precision machining, the research explores the synergistic effects of ultrasonic energy and flow field dynamics, offering novel insights for high-quality metal micromachining applications. The research establishes a mathematical model to analyze the interaction between the ultrasonic energy field and electrolytic machining and optimizes the flow field in the narrow electrolytic gap using Fluent software, revealing that an initial electrolyte velocity of 4 m/s and ultrasonic amplitude of 35 μm ensure optimal stability. High-speed photography is employed to capture bubble distribution and micro-pit formation dynamics, while SS304 surface experiments analyze the effects of machining parameters on micro-dimple localization and surface quality. The results show that optimized parameters significantly improve micro-texture quality, yielding micro-pits with a width of 223.4 μm, depth of 28.9 μm, aspect ratio of 0.129, and Ra of 0.205 μm, providing theoretical insights for high-precision metal micromachining. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 13416 KiB  
Article
Experimental Research of Ultrasonic Cavitation Evolution Mechanism and Model Optimization of RUREMM on Cylindrical Surface
by Wenjun Tong and Lin Li
Processes 2024, 12(5), 884; https://doi.org/10.3390/pr12050884 - 27 Apr 2024
Cited by 6 | Viewed by 1693
Abstract
Micro-pits are widely used in the aerospace and tribology sectors on cylindrical surfaces and electrochemical micromachining which are of great significance for the high material removal rate, absence of tool wear, and mechanical stress, while facing significant challenges such as stray corrosion and [...] Read more.
Micro-pits are widely used in the aerospace and tribology sectors on cylindrical surfaces and electrochemical micromachining which are of great significance for the high material removal rate, absence of tool wear, and mechanical stress, while facing significant challenges such as stray corrosion and low machining efficiency. Aiming at the above problems, this paper proposes a comprehensive method called radial ultrasonic rolling electrochemical micromachining (RUREMM) in which an ultrasonic field has been added onto the cylindrical surface. First, a theoretical model was created to gain the rules of the formation and collapse of bubbles in the liquid medium. Second, to analyze the optimal size of the cathode electrode, the COMSOL5.2 simulation software was proposed to research the influence of the electric field on the different dimensions, and the influences of different parameters in RUREMM on material depth/diameter ratio and roughness are explored through processing experiments. Research results found that the cavitation bubble undergoes expansion, compression, collapse and oscillation, where the max deviation is less than 12.5%. The optimized size was chosen as 200 × 200 μm2 and an electrode spacing of 800 μm through a series of electric field model simulation analyses. Relevant experiments show that the minimum pits with a width of 212.4 μm, a depth of 21.8 μm, and a surface roughness (Ra) of 0.253 μm were formed due to the optimized parameters. The research results can offer theoretical references for fabricating micro-pits with enhanced surface quality and processing precision on cylindrical surfaces. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

13 pages, 6332 KiB  
Article
Fabrication of Micro-Dimple Arrays by EMM and RUREMM on Cylindrical Surface
by Wenjun Tong, Tao Lv, Jianlei Wu, Wei Zhang, Xuefeng Xu and Minghuan Wang
Processes 2023, 11(6), 1682; https://doi.org/10.3390/pr11061682 - 1 Jun 2023
Cited by 1 | Viewed by 1776
Abstract
To achieve high precision, stability, and good surface quality when producing micro-dimple arrays on cylindrical surfaces, we propose a new processing method known as radial ultrasonic rolling electrochemical micromachining (RUREMM) in this study. This method is based on the electrochemical micromachining (EMM) and [...] Read more.
To achieve high precision, stability, and good surface quality when producing micro-dimple arrays on cylindrical surfaces, we propose a new processing method known as radial ultrasonic rolling electrochemical micromachining (RUREMM) in this study. This method is based on the electrochemical micromachining (EMM) and ultrasonic machining principle. The relevant simulation model was created, and ANSYS researched the flow field characteristics of the electrolyte between the array electrodes and the workpiece. Micro-dimple arrays were created on a SS304 cylindrical surface with the consideration of the effects of the machining parameters, including ultrasonic amplitude and applied pulse voltage. Compared with the EMM, the average width of the micro-dimples is reduced by 24.5%, the aspect ratio of the dimple is increased by 108.0%, and the surface roughness of micro-dimples is decreased by 59.7%. In addition, the localization and the surface quality of micro-dimples by RUREMM can be improved when using appropriate machining parameters. Full article
Show Figures

Figure 1

13 pages, 2586 KiB  
Article
The Optimal Processing Parameters of Radial Ultrasonic Rolling Electrochemical Micromachining—RSM Approach
by Kailei He, Xia Chen and Minghuan Wang
Micromachines 2020, 11(11), 1002; https://doi.org/10.3390/mi11111002 - 13 Nov 2020
Cited by 2 | Viewed by 2434
Abstract
Radial ultrasonic rolling electrochemical micromachining (RUR-EMM) is a new method of electrochemical machining (ECM). By feeding small and rotating electrodes aided by ultrasonic rolling, an array of pits can be manufactured, which is called microstructures. However, there still exists the problem of choosing [...] Read more.
Radial ultrasonic rolling electrochemical micromachining (RUR-EMM) is a new method of electrochemical machining (ECM). By feeding small and rotating electrodes aided by ultrasonic rolling, an array of pits can be manufactured, which is called microstructures. However, there still exists the problem of choosing the optimal machining parameters to realize the workpiece machining with high quality and high efficiency. In the present study, response surface methodology (RSM) was proposed to optimize the machining parameters. Firstly, the performance criteria of the RUR-EMM are measured through investigating the effect of working parameters, such as applied voltage, electrode rotation speed, pulse frequency and interelectrode gap (IEG), on material removal amount (MRA) and surface roughness (Ra). Then, the experimental results are statistically analyzed and modeled through RSM. The regression model adequacies are checked using the analysis of variance. Furthermore, the optimal combination of these parameters has been evaluated and verified by experiment to maximize MRA and minimize Ra. The results show that each parameter has a similar and non-linear influence on the MRA and Ra. Specifically, with the increase of each parameter, MRA increases first and decreases when the parameters reach a certain value. On the contrary, Ra decreases first and then increases. Under the combined effect of these parameters, the productivity is improved. The experimental value of MRA and Ra is 0.06006 mm2 and 51.1 nm, which were 0.8% and 2.4% different from the predicted values. Full article
Show Figures

Figure 1

Back to TopTop