Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = quasi-monopolar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 350 KiB  
Article
A Family of Newton and Quasi-Newton Methods for Power Flow Analysis in Bipolar Direct Current Networks with Constant Power Loads
by Oscar Danilo Montoya, Juan Diego Pulgarín Rivera, Luis Fernando Grisales-Noreña, Walter Gil-González and Fabio Andrade-Rengifo
Math. Comput. Appl. 2025, 30(3), 50; https://doi.org/10.3390/mca30030050 - 6 May 2025
Viewed by 582
Abstract
This paper presents a comprehensive study on the formulation and solution of the power flow problem in bipolar direct current (DC) distribution networks with unbalanced constant power loads. Using the nodal voltage method, a unified nonlinear model is proposed which accurately captures both [...] Read more.
This paper presents a comprehensive study on the formulation and solution of the power flow problem in bipolar direct current (DC) distribution networks with unbalanced constant power loads. Using the nodal voltage method, a unified nonlinear model is proposed which accurately captures both monopolar and bipolar load configurations as well as the voltage coupling between conductors. The model assumes a solid grounding of the neutral conductor and known system parameters, ensuring reproducibility and physical consistency. Seven iterative algorithms are developed and compared, including three Newton–Raphson-based formulations and four quasi-Newton methods with constant Jacobian approximations. The proposed techniques are validated on two benchmark networks comprising 21 and 85 buses. Numerical results demonstrate that Newton-based methods exhibit quadratic convergence and high accuracy, while quasi-Newton approaches significantly reduce computational time, making them more suitable for large-scale systems. The findings highlight the trade-offs between convergence speed and computational efficiency, and they provide valuable insights for the planning and operation of modern bipolar DC grids. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

10 pages, 912 KiB  
Article
New Architecture of Solid-State High-Voltage Pulse Generators
by Yahia Achour, Jacek Starzyński and Kazimierz Jakubiuk
Energies 2022, 15(13), 4823; https://doi.org/10.3390/en15134823 - 1 Jul 2022
Cited by 4 | Viewed by 3393
Abstract
The application of the nanosecond pulsed electric field (nsPEF) for biomedical treatments has gained more interest in recent decades due to the development of pulsed power technologies which provides the ability to control the electric field dose applied during tests. In this context, [...] Read more.
The application of the nanosecond pulsed electric field (nsPEF) for biomedical treatments has gained more interest in recent decades due to the development of pulsed power technologies which provides the ability to control the electric field dose applied during tests. In this context, the proposed paper describes a new architecture of solid-state high-voltage pulse generators (SS-HVPG) designed to generate fully customised sequences of quasi-rectangular pulses. The idea is based on the combination of semiconductor switches (IGBT/MOSFET) known for their flexibility and controllability with special magnetic switches to build compact and modular generators. The proposed structure is inspired by the most known pulse generator of Marx, but mixes its two variants for negative and positive polarities. Thus, the polarity of the generated pulses can be freely selected. In addition to that, the use of IGBTs/MOSFET ensures a tunable repetition rate and pulse width. The capacitors are charged via a series of magnetic switches and a flyback DC–DC converter which provides fast and efficient charging and also an adjustable amplitude of the output pulses. The design can be easily simplified giving two other modified structures, based on the same idea, for mono-polar operating (only positive or only negative pulses) with a reduced number of switches. A SPICE simulation of the generator and results of experimental tests carried out on a three stages generator are presented. The obtained results confirm the operating principle and the claimed performances of the new structure. Full article
Show Figures

Figure 1

12 pages, 5687 KiB  
Article
Bioimpedance Sensor Array for Long-Term Monitoring of Wound Healing from Beneath the Primary Dressings and Controlled Formation of H2O2 Using Low-Intensity Direct Current
by Atte Kekonen, Mikael Bergelin, Max Johansson, Narender Kumar Joon, Johan Bobacka and Jari Viik
Sensors 2019, 19(11), 2505; https://doi.org/10.3390/s19112505 - 31 May 2019
Cited by 41 | Viewed by 8499
Abstract
Chronic wounds impose a significant financial burden for the healthcare system. Currently, assessment and monitoring of hard-to-heal wounds are often based on visual means and measuring the size of the wound. The primary wound dressings must be removed before assessment can be done. [...] Read more.
Chronic wounds impose a significant financial burden for the healthcare system. Currently, assessment and monitoring of hard-to-heal wounds are often based on visual means and measuring the size of the wound. The primary wound dressings must be removed before assessment can be done. We have developed a quasi-monopolar bioimpedance-measurement-based method and a measurement system to determine the status of wound healing. The objective of this study was to demonstrate that with an appropriate setup, long-term monitoring of wound healing from beneath the primary dressings is feasible. The developed multielectrode sensor array was applied on the wound area and left under the primary dressings for 142 h. The impedance of the wounds and the surrounding intact skin area was measured regularly during the study at 150 Hz, 300 Hz, 1 kHz, and 5 kHz frequencies. At the end of the follow-up period, the wound impedance had reached the impedance of the intact skin at the higher frequencies and increased significantly at the lowest frequencies. The measurement frequency affected the measurement sensitivity in wound monitoring. The skin impedance remained stable over the measurement period. The sensor array also enabled the administration of periodical low-intensity direct current (LIDC) stimulation in order to create an antimicrobial environment across the wound area via the controlled formation of hydrogen peroxide (H2O2). Full article
Show Figures

Figure 1

Back to TopTop