Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = quad-polarized ScanSAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11346 KB  
Article
Polarmetric Consistency Assessment and Calibration Method for Quad-Polarized ScanSAR Based on Cross-Beam Data
by Di Yin, Jitong Duan, Jili Sun, Liangbo Zhao, Xiaochen Wang, Songtao Shangguan, Lihua Zhong and Wen Hong
Remote Sens. 2025, 17(20), 3420; https://doi.org/10.3390/rs17203420 - 13 Oct 2025
Viewed by 182
Abstract
The range-dependence on polarization distortion of spaceborne polarimetric synthetic aperture radar (SAR) affects the accuracy of wide-swath polarization applications, such as environmental monitoring, sea ice classification and ocean wave inversion. Traditional calibration methods, assessing the distortion mainly based on ground experiments, suffer from [...] Read more.
The range-dependence on polarization distortion of spaceborne polarimetric synthetic aperture radar (SAR) affects the accuracy of wide-swath polarization applications, such as environmental monitoring, sea ice classification and ocean wave inversion. Traditional calibration methods, assessing the distortion mainly based on ground experiments, suffer from tedious active calibrator deployment work, which are time-consuming and cost-intensive. This paper proposes a novel polarimetric assessment and calibration method for the quad-polarized wide-swath ScanSAR imaging mode. Firstly, by using distributed target data that satisfy the system reciprocity requirement, we assess the polarization distortion matrices for a single beam in the mode. Secondly, we transfer the matrix results from one beam to another by analyzing data from the overlapping region between beams. Thirdly, we calibrate the quad-polarized data and achieve an overall assessment and calibration results. Compared to traditional calibration methods, the presented method focuses on using cross-beam (overlapping area) data to reduce the dependence on active calibrators and avoid conducting calibration work beam-by-beam. The assessment and calibration experiment is conducted on Gaofen-3 quad-polarized ScanSAR experiment mode data. The calibrated images and polarization decomposition results are compared with those from well-calibrated quad-polarized Stripmap mode data located in the same region. The results of the comparison revealed the effectiveness and accuracy of the proposed method. Full article
Show Figures

Figure 1

17 pages, 3972 KB  
Review
Hybrid Dual-Polarization Synthetic Aperture Radar
by R. Keith Raney
Remote Sens. 2019, 11(13), 1521; https://doi.org/10.3390/rs11131521 - 27 Jun 2019
Cited by 49 | Viewed by 9024
Abstract
Compact polarimetry for a synthetic aperture radar (SAR) system is reviewed. Compact polarimetry (CP) is intended to provide useful polarimetric image classifications while avoiding the disadvantages of space-based quadrature-polarimetric (quad-pol) SARs. Two CP approaches are briefly described, π/4 and circular. A third form, [...] Read more.
Compact polarimetry for a synthetic aperture radar (SAR) system is reviewed. Compact polarimetry (CP) is intended to provide useful polarimetric image classifications while avoiding the disadvantages of space-based quadrature-polarimetric (quad-pol) SARs. Two CP approaches are briefly described, π/4 and circular. A third form, hybrid compact polarimetry (HCP) has emerged as the preferred embodiment of compact polarimetry. HCP transmits circular polarization and receives on two orthogonal linear polarizations. When seen through its associated data processing and image classification algorithms, HPC’s heritage dates back to the Stokes parameters (1852), which are summarized and explained in plain language. Hybrid dual-polarimetric imaging radars were in the payloads of two lunar-orbiting satellites, India’s Earth-observing RISAT-1, and Japan’s ALOS-2. In lunar or planetary orbit, a satellite equipped with an HCP imaging radar delivers the same class of polarimetric information as Earth-based radar astronomy. In stark contrast to quad-pol, compact polarimetry is compatible with wide swath modes of a SAR, including ScanSAR. All operational modes of the SARs aboard Canada’s three-satellite Radarsat Constellation Mission (RCM) are hybrid dual-polarimetric. Image classification methodologies for HCP data are reviewed, two of which introduce errors for reasons explained. Their use is discouraged. An alternative and recommended group of methodologies yields reliable results, illustrated by polarimetrically classified images. A survey over numerous quantitative studies demonstrates HCP polarimetric classification effectiveness. The results verify that the performance accuracy of the HCP architecture is comparable to the accuracy delivered by a quadrature-polarized SAR. Four appendices are included covering related topics, including comments on inflight calibration of an HCP radar. Full article
(This article belongs to the Special Issue Compact Polarimetric SAR)
Show Figures

Graphical abstract

20 pages, 14481 KB  
Article
Retrieval of Sea Surface Wind Speeds from Gaofen-3 Full Polarimetric Data
by Tianyu Zhang, Xiao-Ming Li, Qian Feng, Yongzheng Ren and Yingni Shi
Remote Sens. 2019, 11(7), 813; https://doi.org/10.3390/rs11070813 - 4 Apr 2019
Cited by 24 | Viewed by 4665
Abstract
In this paper, the sea surface wind speed (SSWS) retrieval from Gaofen-3 (GF-3) quad-polarization stripmap (QPS) data in vertical-vertical (VV), horizontal-horizontal (HH), and vertical-horizontal (VH) polarizations is investigated in detail based on 3170 scenes acquired from October 2016 to May 2018. The radiometric [...] Read more.
In this paper, the sea surface wind speed (SSWS) retrieval from Gaofen-3 (GF-3) quad-polarization stripmap (QPS) data in vertical-vertical (VV), horizontal-horizontal (HH), and vertical-horizontal (VH) polarizations is investigated in detail based on 3170 scenes acquired from October 2016 to May 2018. The radiometric calibration factor of the VV polarization data is examined first. This calibration factor generally meets the requirement of SSWS retrieval accuracy with an absolute bias of less than 0.5 m/s but shows highly dispersed characteristics. These results lead to SSWS retrievals with a small bias of 0.18 m/s, but a rather high root mean square error (RMSE) of 2.36 m/s when compared with the ERA-Interim reanalysis model data. Two refitted polarization ratio (PR) models for the QPS HH polarization data are presented. Based on a combination of the incidence angle-dependent and azimuth angle-dependent PR model and CMOD5.N, the SSWS derived from the QPS HH data shows a bias of 0.07 m/s and an RMSE of 2.26 m/s relative to the ERA-Interim reanalysis model wind speed. A linear function relating SSWS and the normalized radar cross section (NRCS) of QPS VH data is derived. The SSWS data retrieved from the QPS VH data show good agreement with the WindSat SSWS data, with a bias of 0.1 m/s and an RMSE of 2.02 m/s. We also apply the linear function to the GF-3 Wide ScanSAR data acquired for the typhoon SOULIK, which yields very good agreement with the model results. A comparison of SSWS retrievals among three different polarization datasets is also presented. The current study and our previous work demonstrate that the general accuracy of the SSWS retrieval based on GF-3 QPS data has an absolute bias of less than 0.3 m/s and an RMSE of 2.0 ± 0.2 m/s relative to various datasets. Further improvement will depend on dedicated radiometric calibration efforts. Full article
(This article belongs to the Special Issue Synthetic Aperture Radar Observations of Marine Coastal Environments)
Show Figures

Figure 1

Back to TopTop