Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = psychrophilic diatom

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4583 KiB  
Article
Lipidome Plasticity Enables Unusual Photosynthetic Flexibility in Arctic vs. Temperate Diatoms
by Jon Brage Svenning, Terje Vasskog, Karley Campbell, Agnethe Hansen Bæverud, Torbjørn Norberg Myhre, Lars Dalheim, Zoé Lulu Forgereau, Janina Emilia Osanen, Espen Holst Hansen and Hans C. Bernstein
Mar. Drugs 2024, 22(2), 67; https://doi.org/10.3390/md22020067 - 27 Jan 2024
Cited by 3 | Viewed by 2736
Abstract
The diatom lipidome actively regulates photosynthesis and displays a high degree of plasticity in response to a light environment, either directly as structural modifications of thylakoid membranes and protein–pigment complexes, or indirectly via photoprotection mechanisms that dissipate excess light energy. This acclimation is [...] Read more.
The diatom lipidome actively regulates photosynthesis and displays a high degree of plasticity in response to a light environment, either directly as structural modifications of thylakoid membranes and protein–pigment complexes, or indirectly via photoprotection mechanisms that dissipate excess light energy. This acclimation is crucial to maintaining primary production in marine systems, particularly in polar environments, due to the large temporal variations in both the intensity and wavelength distributions of downwelling solar irradiance. This study investigated the hypothesis that Arctic marine diatoms uniquely modify their lipidome, including their concentration and type of pigments, in response to wavelength-specific light quality in their environment. We postulate that Arctic-adapted diatoms can adapt to regulate their lipidome to maintain growth in response to the extreme variability in photosynthetically active radiation. This was tested by comparing the untargeted lipidomic profiles, pigmentation, specific growth rates and carbon assimilation of the Arctic diatom Porosira glacialis vs. the temperate species Coscinodiscus radiatus during exponential growth under red, blue and white light. Here, we found that the chromatic wavelength influenced lipidome remodeling and growth in each strain, with P. glacialis showing effective utilization of red light coupled with increased inclusion of primary light-harvesting pigments and polar lipid classes. These results indicate a unique photoadaptation strategy that enables Arctic diatoms like P. glacialis to capitalize on a wide chromatic growth range and demonstrates the importance of active lipid regulation in the Arctic light environment. Full article
(This article belongs to the Special Issue Ecology, Diversity and Evolution of Diatoms)
Show Figures

Figure 1

14 pages, 4588 KiB  
Article
Identification and Characterization of an Isoform Antifreeze Protein from the Antarctic Marine Diatom, Chaetoceros neogracile and Suggestion of the Core Region
by Minjae Kim, Yunho Gwak, Woongsic Jung and EonSeon Jin
Mar. Drugs 2017, 15(10), 318; https://doi.org/10.3390/md15100318 - 18 Oct 2017
Cited by 13 | Viewed by 5762
Abstract
Antifreeze proteins (AFPs) protecting the cells against freezing are produced in response to extremely low temperatures in diverse psychrophilic organisms, and they are encoded by multiple gene families. The AFP of Antarctic marine diatom Chaetoceros neogracile is reported in our previous research, but [...] Read more.
Antifreeze proteins (AFPs) protecting the cells against freezing are produced in response to extremely low temperatures in diverse psychrophilic organisms, and they are encoded by multiple gene families. The AFP of Antarctic marine diatom Chaetoceros neogracile is reported in our previous research, but like other microalgae, was considered to probably have additional genes coding AFPs. In this paper, we reported the cloning and characterization of additional AFP gene from C. neogracile (Cn-isoAFP). Cn-isoAFP protein is 74.6% identical to the previously reported Cn-AFP. The promoter sequence of Cn-isoAFP contains environmental stress responsive elements for cold, thermal, and high light conditions. Cn-isoAFP transcription levels increased dramatically when cells were exposed to freezing (−20 °C), thermal (10 °C), or high light (600 μmol photon m−2 s−1) stresses. The thermal hysteresis (TH) activity of recombinant Cn-isoAFP was 0.8 °C at a protein concentration of 5 mg/mL. Results from homology modeling and TH activity analysis of site-directed mutant proteins elucidated AFP mechanism to be a result of flatness of B-face maintained via hydrophobic interactions. Full article
Show Figures

Figure 1

13 pages, 1960 KiB  
Article
Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China
by Shiyong Sun, Faqin Dong, Hermann Ehrlich, Xueqing Zhao, Mingxue Liu, Qunwei Dai, Qiongfang Li, Dejun An and Hailiang Dong
Int. J. Environ. Res. Public Health 2014, 11(12), 13084-13096; https://doi.org/10.3390/ijerph111213084 - 16 Dec 2014
Cited by 16 | Viewed by 6989
Abstract
Diatoms are a highly diversified group of algae that are widely distributed in aquatic ecosystems, and various species have different nutrient and temperature requirements for optimal growth. Here, we describe unusual psychrophilic diatoms of Cymbella in a travertine deposition environment in southwestern China [...] Read more.
Diatoms are a highly diversified group of algae that are widely distributed in aquatic ecosystems, and various species have different nutrient and temperature requirements for optimal growth. Here, we describe unusual psychrophilic diatoms of Cymbella in a travertine deposition environment in southwestern China in winter season. Travertine surfaces are colonized by these psychrophilic diatoms, which form biofilms of extracellular polysaccharide substances (EPS) with active metabolic activities in extremely cold conditions. The travertine in Huanglong, is a typical single crystalline calcite with anisotropic lattice distortions of unit cell parameters along axes of a and c, and this structure is suggestive of some level of metabolic mediation on mineralization. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) results further confirmed the occurrence of biogenic distortion of the crystal lattice of travertine calcite. Overall, our results imply that the metabolic influence of psychrophilic diatoms may be particularly important for promoting formation and dissolution of travertine in extremely cold environments of Huanglong. The EPS of psychrophilic diatoms will protect travertine from HCO3 etching and provide template for forming travertine when water re-flowing, in warm season. Full article
Show Figures

Figure 1

Back to TopTop