Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = protein kinase receptor (PKR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 9086 KiB  
Review
Research Progress on Hypoglycemic Effects and Molecular Mechanisms of Flavonoids: A Review
by Mengyi Liu, Chunlong Liu, Puba Zhaxi, Xiaohong Kou, Yazhou Liu and Zhaohui Xue
Antioxidants 2025, 14(4), 378; https://doi.org/10.3390/antiox14040378 - 22 Mar 2025
Cited by 2 | Viewed by 1633
Abstract
As a prevalent metabolic disorder, the increasing incidence of diabetes imposes a significant burden on global healthcare. Flavonoids in natural phytochemical products exhibit notable hypoglycemic properties, making them potential alternatives for diabetes treatment. This article summarizes the hypoglycemic properties of flavonoid subcategories studied [...] Read more.
As a prevalent metabolic disorder, the increasing incidence of diabetes imposes a significant burden on global healthcare. Flavonoids in natural phytochemical products exhibit notable hypoglycemic properties, making them potential alternatives for diabetes treatment. This article summarizes the hypoglycemic properties of flavonoid subcategories studied in recent years, including flavones, isoflavones, flavonols, flavanols, and others. The relevant targets and signal pathways, such as α-amylase, α-glucosidase, insulin receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), PKR-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α (eIF2α)/activation transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP), etc., are also elaborated. Additionally, flavonoids have also been demonstrated to modulate the gut microbiota and its metabolites. Through the aforementioned mechanisms, flavonoids mainly suppress carbohydrate metabolism and gluconeogenesis; facilitate glucose uptake, glycogenesis, and insulin secretion; and mitigate insulin resistance, oxidative stress, inflammation, etc. Notably, several studies have indicated that certain flavonoids displayed synergistic hypoglycemic effects. In conclusion, this article provides a comprehensive review of the hypoglycemic effects of the flavonoids investigated in recent years, aiming to offer theoretical insights for their further exploration. Full article
Show Figures

Graphical abstract

17 pages, 4096 KiB  
Article
Oleoylethanolamide and Palmitoylethanolamide Enhance IFNβ-Induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells
by Chiara Camoglio, Jihane Balla, Paola Fadda and Simona Dedoni
Molecules 2024, 29(7), 1592; https://doi.org/10.3390/molecules29071592 - 2 Apr 2024
Cited by 4 | Viewed by 2761
Abstract
Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma [...] Read more.
Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin’s lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNβ. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNβ leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNβ signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNβ-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells. Full article
(This article belongs to the Special Issue Anti-inflammatory Molecules)
Show Figures

Graphical abstract

13 pages, 846 KiB  
Review
The Role of RNA Sensors in Regulating Innate Immunity to Gammaherpesviral Infections
by Huirong Zhang, Praneet K. Sandhu and Blossom Damania
Cells 2023, 12(12), 1650; https://doi.org/10.3390/cells12121650 - 17 Jun 2023
Cited by 4 | Viewed by 3594
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) and the Epstein–Barr virus (EBV) are double-stranded DNA oncogenic gammaherpesviruses. These two viruses are associated with multiple human malignancies, including both B and T cell lymphomas, as well as epithelial- and endothelial-derived cancers. KSHV and EBV establish a life-long [...] Read more.
Kaposi’s sarcoma-associated herpesvirus (KSHV) and the Epstein–Barr virus (EBV) are double-stranded DNA oncogenic gammaherpesviruses. These two viruses are associated with multiple human malignancies, including both B and T cell lymphomas, as well as epithelial- and endothelial-derived cancers. KSHV and EBV establish a life-long latent infection in the human host with intermittent periods of lytic replication. Infection with these viruses induce the expression of both viral and host RNA transcripts and activates several RNA sensors including RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), protein kinase R (PKR) and adenosine deaminases acting on RNA (ADAR1). Activation of these RNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV and EBV utilize both viral and cellular proteins to block the innate immune pathways and facilitate their own infection. In this review, we summarize how gammaherpesviral infections activate RNA sensors and induce their downstream signaling cascade, as well as how these viruses evade the antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation. Full article
(This article belongs to the Special Issue Viruses and Cancer: From Cellular Mechanism to Therapeutic Aspects)
Show Figures

Figure 1

23 pages, 9526 KiB  
Article
Determining the Protective Efficacy of Toll-Like Receptor Ligands to Minimize H9N2 Avian Influenza Virus Transmission in Chickens
by Sugandha Raj, Mohammadali Alizadeh, Bahram Shoojadoost, Douglas Hodgins, Éva Nagy, Samira Mubareka, Khalil Karimi, Shahriar Behboudi and Shayan Sharif
Viruses 2023, 15(1), 238; https://doi.org/10.3390/v15010238 - 14 Jan 2023
Cited by 11 | Viewed by 3141
Abstract
Low-pathogenicity avian influenza viruses (AIV) of the H9N2 subtype can infect and cause disease in chickens. Little is known about the efficacy of immune-based strategies for reducing the transmission of these viruses. The present study investigated the efficacy of Toll-like receptor (TLR) ligands [...] Read more.
Low-pathogenicity avian influenza viruses (AIV) of the H9N2 subtype can infect and cause disease in chickens. Little is known about the efficacy of immune-based strategies for reducing the transmission of these viruses. The present study investigated the efficacy of Toll-like receptor (TLR) ligands (CpG ODN 2007 and poly(I:C)) to reduce H9N2 AIV transmission from TLR-treated seeder (trial 1) or inoculated chickens (trial 2) to naive chickens. The results from trial 1 revealed that a low dose of CpG ODN 2007 led to the highest reduction in oral shedding, and a high dose of poly(I:C) was effective at reducing oral and cloacal shedding. Regarding transmission, the recipient chickens exposed to CpG ODN 2007 low-dose-treated seeder chickens showed a maximum reduction in shedding with the lowest number of AIV+ chickens. The results from trial 2 revealed a maximum reduction in oral and cloacal shedding in the poly(I:C) high-dose-treated chickens (recipients), followed by the low-dose CpG ODN 2007 group. In these two groups, the expression of type I interferons (IFNs), protein kinase R (PKR), interferon-induced transmembrane protein 3 (IFITM3), viperin, and (interleukin) IL-1β, IL-8, and 1L-18 was upregulated in the spleen, cecal tonsils and lungs. Hence, TLR ligands can reduce AIV transmission in chickens. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, Volume III)
Show Figures

Figure 1

15 pages, 1882 KiB  
Article
Interferon Signaling in Chickens Plays a Crucial Role in Inhibiting Influenza Replication in DF1 Cells
by Daniel S. Layton, Kostlend Mara, Meiling Dai, Luis Fernando Malaver-Ortega, Tamara J. Gough, Kerri Bruce, Kristie A. Jenkins and Andrew G. D. Bean
Microorganisms 2022, 10(1), 133; https://doi.org/10.3390/microorganisms10010133 - 10 Jan 2022
Cited by 12 | Viewed by 2950
Abstract
Influenza A viruses (IAV) pose a constant threat to human and poultry health. Of particular interest are the infections caused by highly pathogenic avian influenza (HPAI) viruses, such as H5N1, which cause significant production issues. In response to influenza infection, cells activate immune [...] Read more.
Influenza A viruses (IAV) pose a constant threat to human and poultry health. Of particular interest are the infections caused by highly pathogenic avian influenza (HPAI) viruses, such as H5N1, which cause significant production issues. In response to influenza infection, cells activate immune mechanisms that lead to increased interferon (IFN) production. To investigate how alterations in the interferon signaling pathway affect the cellular response to infection in the chicken, we used CRISPR/Cas9 to generate a chicken cell line that lacks a functional the type I interferon receptor (IFNAR1). We then assessed viral infections with the WSN strain of influenza. Cells lacking a functional IFNAR1 receptor showed reduced expression of the interferon stimulated genes (ISG) such as Protein Kinase R (PKR) and Myxovirus resistance (Mx) and were more susceptible to viral infection with WSN. We further investigated the role or IFNAR1 on low pathogenicity avian influenza (LPAI) strains (H7N9) and a HPAI strain (H5N1). Intriguingly, Ifnar−/− cells appeared more resistant than WT cells when infected with HPAI virus, potentially indicating a different interaction between H5N1 and the IFN signaling pathway. Our findings support that ChIFNAR1 is a key component of the chicken IFN signaling pathway and these data add contributions to the field of host-avian pathogen interaction and innate immunity in chickens. Full article
(This article belongs to the Special Issue Avian Pathogens)
Show Figures

Figure 1

11 pages, 1689 KiB  
Article
The Protein Kinase Receptor Modulates the Innate Immune Response against Tacaribe Virus
by Hector Moreno and Stefan Kunz
Viruses 2021, 13(7), 1313; https://doi.org/10.3390/v13071313 - 7 Jul 2021
Cited by 6 | Viewed by 2857
Abstract
The New World (NW) mammarenavirus group includes several zoonotic highly pathogenic viruses, such as Junin (JUNV) or Machupo (MACV). Contrary to the Old World mammarenavirus group, these viruses are not able to completely suppress the innate immune response and trigger a robust interferon [...] Read more.
The New World (NW) mammarenavirus group includes several zoonotic highly pathogenic viruses, such as Junin (JUNV) or Machupo (MACV). Contrary to the Old World mammarenavirus group, these viruses are not able to completely suppress the innate immune response and trigger a robust interferon (IFN)-I response via retinoic acid-inducible gene I (RIG-I). Nevertheless, pathogenic NW mammarenaviruses trigger a weaker IFN response than their nonpathogenic relatives do. RIG-I activation leads to upregulation of a plethora of IFN-stimulated genes (ISGs), which exert a characteristic antiviral effect either as lone effectors, or resulting from the combination with other ISGs or cellular factors. The dsRNA sensor protein kinase receptor (PKR) is an ISG that plays a pivotal role in the control of the mammarenavirus infection. In addition to its well-known protein synthesis inhibition, PKR further modulates the overall IFN-I response against different viruses, including mammarenaviruses. For this study, we employed Tacaribe virus (TCRV), the closest relative of the human pathogenic JUNV. Our findings indicate that PKR does not only increase IFN-I expression against TCRV infection, but also affects the kinetic expression and the extent of induction of Mx1 and ISG15 at both levels, mRNA and protein expression. Moreover, TCRV fails to suppress the effect of activated PKR, resulting in the inhibition of a viral titer. Here, we provide original evidence of the specific immunomodulatory role of PKR over selected ISGs, altering the dynamic of the innate immune response course against TCRV. The mechanisms for innate immune evasion are key for the emergence and adaptation of human pathogenic arenaviruses, and highly pathogenic mammarenaviruses, such as JUNV or MACV, trigger a weaker IFN response than nonpathogenic mammarenaviruses. Within the innate immune response context, PKR plays an important role in sensing and restricting the infection of TCRV virus. Although the mechanism of PKR for protein synthesis inhibition is well described, its immunomodulatory role is less understood. Our present findings further characterize the innate immune response in the absence of PKR, unveiling the role of PKR in defining the ISG profile after viral infection. Moreover, TCRV fails to suppress activated PKR, resulting in viral progeny production inhibition. Full article
(This article belongs to the Special Issue In Memory of Stefan Kunz)
Show Figures

Figure 1

11 pages, 1707 KiB  
Article
Endoplasmic Reticulum Stress Contributes to Gefitinib-Induced Apoptosis in Glioma
by Cheng-Yi Chang, Ping-Ho Pan, Chih-Cheng Wu, Su-Lan Liao, Wen-Ying Chen, Yu-Hsiang Kuan, Wen-Yi Wang and Chun-Jung Chen
Int. J. Mol. Sci. 2021, 22(8), 3934; https://doi.org/10.3390/ijms22083934 - 11 Apr 2021
Cited by 31 | Viewed by 3981
Abstract
Adequate stress on the Endoplasmic Reticulum (ER) with the Unfolded Protein Response (UPR) could maintain glioma malignancy. Uncontrolled ER stress, on the other hand, predisposes an apoptosis-dominant UPR program. We studied here the proapoptotic actions of the Epidermal Growth Factor Receptor (EGFR) inhibitor [...] Read more.
Adequate stress on the Endoplasmic Reticulum (ER) with the Unfolded Protein Response (UPR) could maintain glioma malignancy. Uncontrolled ER stress, on the other hand, predisposes an apoptosis-dominant UPR program. We studied here the proapoptotic actions of the Epidermal Growth Factor Receptor (EGFR) inhibitor gefitinib, with the focus on ER stress. The study models were human H4 and U87 glioma cell lines. We found that the glioma cell-killing effects of gefitinib involved caspase 3 apoptotic cascades. Three branches of ER stress, namely Activating Transcription Factor-6 (ATF6), Protein Kinase R (PKR)-Like ER Kinase (PERK), and Inositol-Requiring Enzyme 1 (IRE1), were activated by gefitinib, along with the elevation of intracellular free Ca2+, Reactive Oxygen Species (ROS), and NADPH Oxidase2/4 (NOX2/4). Specifically, elevated IRE1 phosphorylation, Tumor Necrosis Factor (TNF) Receptor-Associated Factor-2 (TRAF2) expression, Apoptosis Signal-Regulating Kinase-1 (Ask1) phosphorylation, c-Jun N-Terminal Kinase (JNK) phosphorylation, and Noxa expression appeared in gefitinib-treated glioma cells. Genetic, pharmacological, and biochemical studies further indicated an active ROS/ER stress/Ask1/JNK/Noxa axis causing the glioma apoptosis induced by gefitinib. The findings suggest that ER-stress-based therapeutic targeting could be a promising option in EGFR inhibitor glioma therapy, and may ultimately achieve a better patient response. Full article
(This article belongs to the Special Issue Endoplasmic Reticulum Stress and Unfolded Protein Response 2021)
Show Figures

Figure 1

12 pages, 723 KiB  
Review
The PKR/P38/RIPK1 Signaling Pathway as a Therapeutic Target in Alzheimer’s Disease
by Jacques Hugon and Claire Paquet
Int. J. Mol. Sci. 2021, 22(6), 3136; https://doi.org/10.3390/ijms22063136 - 19 Mar 2021
Cited by 35 | Viewed by 4956
Abstract
Neuropathological lesions in Alzheimer’s disease (AD) include amyloid plaques formed by the accumulation of amyloid peptides, neurofibrillary tangles made of hyperphosphorylated tau protein, synaptic and neuronal degenerations, and neuroinflammation. The cause of AD is unknown, but according to the amyloid hypothesis, amyloid oligomers [...] Read more.
Neuropathological lesions in Alzheimer’s disease (AD) include amyloid plaques formed by the accumulation of amyloid peptides, neurofibrillary tangles made of hyperphosphorylated tau protein, synaptic and neuronal degenerations, and neuroinflammation. The cause of AD is unknown, but according to the amyloid hypothesis, amyloid oligomers could lead to the activation of kinases such as eukaryotic translation initiation factor 2-alpha kinase 2 (PKR), p38, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1), which all belong to the same stress-activated pathway. Many toxic kinase activations have been described in AD patients and in experimental models. A p38 mitogen-activated protein kinase inhibitor was recently tested in clinical trials but with unsuccessful results. The complex PKR/P38/RIPK1 (PKR/dual specificity mitogen-activated protein kinase kinase 6 (MKK6)/P38/MAP kinase-activated protein kinase 2 (MK2)/RIPK1) is highly activated in AD brains and in the brains of AD transgenic animals. To delineate the implication of this pathway in AD, we carried out a search on PubMed including PKR/MKK6/p38/MK2/RIPK1, Alzheimer, and therapeutics. The involvement of this signaling pathway in the genesis of AD lesions, including Aβ accumulations and tau phosphorylation as well as cognitive decline, is demonstrated by the reports described in this review. A future combination strategy with kinase inhibitors should be envisaged to modulate the consequences for neurons and other brain cells linked to the abnormal activation of this pathway. Full article
(This article belongs to the Special Issue Pharmacology of Neurodegenerative Diseases)
Show Figures

Figure 1

33 pages, 1352 KiB  
Review
Cytosolic Sensors for Pathogenic Viral and Bacterial Nucleic Acids in Fish
by Miriam Mojzesz, Krzysztof Rakus, Magdalena Chadzinska, Kentaro Nakagami, Gouranga Biswas, Masahiro Sakai and Jun-ichi Hikima
Int. J. Mol. Sci. 2020, 21(19), 7289; https://doi.org/10.3390/ijms21197289 - 2 Oct 2020
Cited by 23 | Viewed by 6022
Abstract
Recognition of the non-self signature of invading pathogens is a crucial step for the initiation of the innate immune mechanisms of the host. The host response to viral and bacterial infection involves sets of pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen [...] Read more.
Recognition of the non-self signature of invading pathogens is a crucial step for the initiation of the innate immune mechanisms of the host. The host response to viral and bacterial infection involves sets of pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen structures, known as pathogen-associated molecular patterns (PAMPs). Recent advances in the identification of different types of PRRs in teleost fish revealed a number of cytosolic sensors for recognition of viral and bacterial nucleic acids. These are DExD/H-box RNA helicases including a group of well-characterized retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) and non-RLR DExD/H-box RNA helicases (e.g., DDX1, DDX3, DHX9, DDX21, DHX36 and DDX41) both involved in recognition of viral RNAs. Another group of PRRs includes cytosolic DNA sensors (CDSs), such as cGAS and LSm14A involved in recognition of viral and intracellular bacterial dsDNAs. Moreover, dsRNA-sensing protein kinase R (PKR), which has a role in antiviral immune responses in higher vertebrates, has been identified in fish. Additionally, fish possess a novel PKR-like protein kinase containing Z-DNA binding domain, known as PKZ. Here, we review the current knowledge concerning cytosolic sensors for recognition of viral and bacterial nucleic acids in teleosts. Full article
(This article belongs to the Special Issue Fish Immunology 2.0)
Show Figures

Figure 1

13 pages, 3413 KiB  
Article
Stress Granule Formation Attenuates RACK1-Mediated Apoptotic Cell Death Induced by Morusin
by Ye-Jin Park, Dong Wook Choi, Sang Woo Cho, Jaeseok Han, Siyoung Yang and Cheol Yong Choi
Int. J. Mol. Sci. 2020, 21(15), 5360; https://doi.org/10.3390/ijms21155360 - 28 Jul 2020
Cited by 39 | Viewed by 6403
Abstract
Stress granules are membraneless organelles composed of numerous components including ribonucleoproteins. The stress granules are characterized by a dynamic complex assembly in response to various environmental stressors, which has been implicated in the coordinated regulation of diverse biological pathways, to exert a protective [...] Read more.
Stress granules are membraneless organelles composed of numerous components including ribonucleoproteins. The stress granules are characterized by a dynamic complex assembly in response to various environmental stressors, which has been implicated in the coordinated regulation of diverse biological pathways, to exert a protective role against stress-induced cell death. Here, we show that stress granule formation is induced by morusin, a novel phytochemical displaying antitumor capacity through barely known mechanisms. Morusin-mediated induction of stress granules requires activation of protein kinase R (PKR) and subsequent eIF2α phosphorylation. Notably, genetic inactivation of stress granule formation mediated by G3BP1 knockout sensitized cancer cells to morusin treatment. This protective function against morusin-mediated cell death can be attributed at least in part to the sequestration of receptors for activated C kinase-1 (RACK1) within the stress granules, which reduces caspase-3 activation. Collectively, our study provides biochemical evidence for the role of stress granules in suppressing the antitumor capacity of morusin, proposing that morusin treatment, together with pharmacological inhibition of stress granules, could be an efficient strategy for targeting cancer. Full article
Show Figures

Figure 1

15 pages, 3077 KiB  
Article
Mechanistic Roles of Matrilin-2 and Klotho in Modulating the Inflammatory Activity of Human Aortic Valve Cells
by Erlinda The, Qingzhou Yao, Peijian Zhang, Yufeng Zhai, Lihua Ao, David A. Fullerton and Xianzhong Meng
Cells 2020, 9(2), 385; https://doi.org/10.3390/cells9020385 - 7 Feb 2020
Cited by 15 | Viewed by 3395
Abstract
Background: Calcific aortic valve disease (CAVD) is a chronic inflammatory disease. Soluble extracellular matrix (ECM) proteins can act as damage-associated molecular patterns and may induce valvular inflammation. Matrilin-2 is an ECM protein and has been found to elevate the pro-osteogenic activity in human [...] Read more.
Background: Calcific aortic valve disease (CAVD) is a chronic inflammatory disease. Soluble extracellular matrix (ECM) proteins can act as damage-associated molecular patterns and may induce valvular inflammation. Matrilin-2 is an ECM protein and has been found to elevate the pro-osteogenic activity in human aortic valve interstitial cells (AVICs). Klotho, an anti-aging protein, appears to have anti-inflammatory properties. The effect of matrilin-2 and Klotho on AVIC inflammatory responses remains unclear. Methods and Results: Isolated human AVICs were exposed to matrilin-2. Soluble matrilin-2 induced the production of ICAM-1, MCP-1, and IL-6. It also induced protein kinase R (PKR) activation via Toll-like receptor (TLR) 2 and 4. Pretreatment with PKR inhibitors inhibited NF-κB activation and inflammatory mediator production induced by matrilin-2. Further, recombinant Klotho suppressed PKR and NF-κB activation and markedly reduced the production of inflammatory mediators in human AVICs exposed to matrilin-2. Conclusions: This study revealed that soluble matrilin-2 upregulates AVIC inflammatory activity via activation of the TLR-PKR-NF-κB pathway and that Klotho is potent to suppress AVIC inflammatory responses to a soluble ECM protein through inhibiting PKR. These novel findings indicate that soluble matrilin-2 may accelerate the progression of CAVD by inducing valvular inflammation and that Klotho has the potential to suppress valvular inflammation. Full article
Show Figures

Figure 1

10 pages, 2874 KiB  
Article
Apoptosis Induction by dsRNA-Dependent Protein Kinase R (PKR) in EPC Cells via Caspase 8 and 9 Pathways
by Cheng Xu, Amr A. A. Gamil, Hetron Mweemba Munang’andu and Øystein Evensen
Viruses 2018, 10(10), 526; https://doi.org/10.3390/v10100526 - 27 Sep 2018
Cited by 13 | Viewed by 3759
Abstract
dsRNA-dependent protein kinase R (PKR) is an interferon-inducible protein that mediates antiviral effects and induces apoptosis. We studied PKR-related apoptosis mechanisms by transfecting wild type pcDNA-carp-wtPKR, a catalytically inactive mutant pcDNA-mut-carpPKR, and empty plasmid in Epithelioma papulosum cyprini (EPC) cells, designated wtPKR, mutPKR, [...] Read more.
dsRNA-dependent protein kinase R (PKR) is an interferon-inducible protein that mediates antiviral effects and induces apoptosis. We studied PKR-related apoptosis mechanisms by transfecting wild type pcDNA-carp-wtPKR, a catalytically inactive mutant pcDNA-mut-carpPKR, and empty plasmid in Epithelioma papulosum cyprini (EPC) cells, designated wtPKR, mutPKR, and pcDNA3.1, respectively. PKR was inefficiently expressed from wtPKR unlike mutPKR that produced high PKR levels detected by western blot. eIF2α phosphorylation increased in wtPKR-transfected cells, while for mutPKR, phosphorylation was not different from non-transfected controls. Flow-cytometry revealed high level of apoptosis in wtPKR transfected cells, corresponding with high cytopathic effect. mutPKR and pcDNA3.1 transfection gave significantly less apoptosis and were not different from each other. Caspase-8 and -9 were activated for wtPKR, suggesting death receptor-caspase-8 and mitochondrion-dependent caspase-9 activated pathways, similar to mammalian cells. These findings suggest that the induction of apoptosis via the caspase-8 and -9 pathways are conserved in vertebrate taxa and likely play a role in viral infections of lower vertebrates. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop