Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = propylene glycol alginate sodium sulfate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4062 KiB  
Review
Thermal Stability Determination of Propylene Glycol Sodium Alginate and Ammonium Sulfate with Calorimetry Technology
by Chen Yao, Ye-Cheng Liu, Jie Wu, Yan Tang, Juan Zhai, Chi-Min Shu, Jun-Cheng Jiang, Zhi-Xiang Xing, Chung-Fu Huang and An-Chi Huang
Processes 2022, 10(6), 1177; https://doi.org/10.3390/pr10061177 - 12 Jun 2022
Cited by 5 | Viewed by 3008
Abstract
Propylene Glycol Alginate Sodium Sulfate (PSS) is widely produced and used in medicine as a marine drug for treating hyperlipidemia. During the sulfonation synthesis of PSS, the sulfonation of chlorosulfonic acid is exothermic. At high temperatures, the process can easily produce a large [...] Read more.
Propylene Glycol Alginate Sodium Sulfate (PSS) is widely produced and used in medicine as a marine drug for treating hyperlipidemia. During the sulfonation synthesis of PSS, the sulfonation of chlorosulfonic acid is exothermic. At high temperatures, the process can easily produce a large amount of ammonium sulfate. Ammonium sulfate adheres to PSS in crystal and participates in the sulfonation reaction. In this study, the sulfonation process of commercial PSS was reproduced in the laboratory using chlorosulfonic acid and formamide. We used differential scanning calorimetry and thermogravimetric analyzer to examine the thermal stability of PSS, and we used both differential and integral conversional methods to determine the appropriate thermokinetic models for this substance. We also established an autocatalytic model to study the conversion limit time and the maximum rate time of this substance. After calculation, the activation energy of this substance is no more than 60 kJ/mol, and it has other exothermic performances at different heating rates. The results help to optimize the sulfonation process of PSS and analyze the thermal risk of PSS with ammonium sulfate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 11825 KiB  
Article
The Inhibitory Effect of Propylene Glycol Alginate Sodium Sulfate on Fibroblast Growth Factor 2-Mediated Angiogenesis and Invasion in Murine Melanoma B16-F10 Cells In Vitro
by He Ma, Peiju Qiu, Huixin Xu, Ximing Xu, Meng Xin, Yanyan Chu, Huashi Guan, Chunxia Li and Jinbo Yang
Mar. Drugs 2019, 17(5), 257; https://doi.org/10.3390/md17050257 - 29 Apr 2019
Cited by 11 | Viewed by 4042
Abstract
Melanoma is one of the most malignant and aggressive types of cancer worldwide. Fibroblast growth factor 2 (FGF2) is one of the critical regulators of melanoma angiogenesis and metastasis; thus, it might be an effective anti-cancer strategy to explore FGF2-targeting drug candidates from [...] Read more.
Melanoma is one of the most malignant and aggressive types of cancer worldwide. Fibroblast growth factor 2 (FGF2) is one of the critical regulators of melanoma angiogenesis and metastasis; thus, it might be an effective anti-cancer strategy to explore FGF2-targeting drug candidates from existing drugs. In this study, we evaluate the effect of the marine drug propylene glycol alginate sodium sulfate (PSS) on FGF2-mediated angiogenesis and invasion. The data shows that FGF2 selectively bound to PSS with high affinity. PSS inhibited FGF2-mediated angiogenesis in a rat aortic ring model and suppressed FGF2-mediated invasion, but not the migration of murine melanoma B16-F10 cells. The further mechanism study indicates that PSS decreased the expression of activated matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9), and also suppressed their activity. In addition, PSS was found to decrease the level of Vimentin in B16-F10 cells, which is known to participate in the epithelial–mesenchymal transition. Notably, PSS did not elicit any changes in cancer cell viability. Based on the results above, we conclude that PSS might be a potential drug to regulate the tumor microenvironment in order to facilitate the recovery of melanoma patients. Full article
(This article belongs to the Special Issue Sulfur-Containing Marine Bioactives)
Show Figures

Figure 1

14 pages, 8398 KiB  
Article
Propylene Glycol Alginate Sodium Sulfate Alleviates Cerulein‐Induced Acute Pancreatitis by Modulating the MEK/ERK Pathway in Mice
by Hui Zhang, Yueyue Li, Linqiang Li, Hua Liu, Liangkai Hu, Ying Dai, Jianqing Chen, Shuqi Xu, Weimin Chen, Xiaorong Xu and Xuanfu Xu
Mar. Drugs 2017, 15(2), 45; https://doi.org/10.3390/md15020045 - 17 Feb 2017
Cited by 24 | Viewed by 5834
Abstract
Previous studies have focused on the effects of propylene glycol alginate sodium sulfate (PSS) against thrombosis, but the anti‐inflammatory potential is unknown. Therefore, we specifically focused on the protective effects of PSS on cerulein‐induced acute pancreatitis (AP) using a mouse model, and investigated [...] Read more.
Previous studies have focused on the effects of propylene glycol alginate sodium sulfate (PSS) against thrombosis, but the anti‐inflammatory potential is unknown. Therefore, we specifically focused on the protective effects of PSS on cerulein‐induced acute pancreatitis (AP) using a mouse model, and investigated the mechanism of PSS on autophagy and apoptosis via the Mitogen‐activated protein kinase (MEK)/extracellular signal‐regulated kinase (ERK) pathway. Cerulein (100 ug/kg) was used to induce AP by ten intraperitoneal injections at hourly intervals in Balb/C mice. Pretreatment with vehicle or PSS was carried out 1 h before the first cerulein injection and two doses (25 mg/kg and 50 mg/kg) of PSS were injected intraperitoneally. The severity of AP was assessed by pathological score, biochemistry, pro‐inflammatory cytokine levels, myeloperoxidase (MPO) activity and MEK/ERK activity. Furthermore, pancreatic histological scores, serum amylase and lipase activities, tumor necrosis factor‐α (TNF‐α), interleukin (IL)‐1β interleukin (IL)‐6 levels, and MPO activity were significantly reduced by PSS via up‐regulated MEK/ERK activity. The representative molecules of apoptosis and autophagy, such as Bcl‐2, Bax, Lc‐3, Beclin‐1, P62, were remarkably reduced. Taken together, these results indicate that PSS attenuates pancreas injury by inhibiting autophagy and apoptosis through a mechanism involving the MEK/ERK signaling pathway. Full article
Show Figures

Figure 1

13 pages, 533 KiB  
Article
An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA) Nanoparticles in Rat Plasma
by Peng-Li Li, Chun-Xia Li, Yi-Ting Xue, Hai-Hua Li, Hong-Bing Liu, Xiao-Xi He, Guang-Li Yu and Hua-Shi Guan
Mar. Drugs 2013, 11(4), 1113-1125; https://doi.org/10.3390/md11041113 - 2 Apr 2013
Cited by 17 | Viewed by 7552
Abstract
This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted [...] Read more.
This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. Full article
Show Figures

Graphical abstract

Back to TopTop