Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = promyelocytic leukemia nuclear body components

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4567 KiB  
Article
PML Nuclear Bodies and Cellular Senescence: A Comparative Study of Healthy and Premature Aging Syndrome Donors’ Cells
by Eugene Y. Smirnov, Sergey A. Silonov, Eva A. Shmidt, Aleksandra V. Nozdracheva, Nadezhda M. Pleskach, Mirya L. Kuranova, Anastasia A. Gavrilova, Anna E. Romanovich, Irina M. Kuznetsova, Konstantin K. Turoverov and Alexander V. Fonin
Cells 2024, 13(24), 2075; https://doi.org/10.3390/cells13242075 - 16 Dec 2024
Cited by 1 | Viewed by 1797
Abstract
Natural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). [...] Read more.
Natural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). In this work, morphological changes in PML-NBs and alterations in PML protein localization at the transition of primary fibroblasts to a replicative senescent state were studied by immunofluorescence. The fibroblasts were obtained from both healthy donors and donors with premature aging syndromes (ataxia-telangiectasia and Cockayne syndrome). Our data showed an increase in both the size and the number of PML-NBs, along with nuclear enlargement in senescent cells, suggesting these changes could serve as potential cellular aging markers. Bioinformatic analysis demonstrated that 30% of the proteins in the PML interactome and ~45% of the proteins in the PML-NB predicted proteome are directly associated with senescence and aging processes. These proteins are hypothesized to participate in post-translational modifications and protein sequestration within PML-NBs, thereby influencing transcription factor regulation, DNA damage response, and negative regulation of apoptosis. The findings confirm the significant role of PML-NBs in cellular aging processes and open new avenues for investigating senescence mechanisms and age-associated diseases. Full article
(This article belongs to the Special Issue Understanding Aging Mechanisms to Prevent Age-Related Diseases)
Show Figures

Graphical abstract

22 pages, 1655 KiB  
Review
The Nucleolus and Its Interactions with Viral Proteins Required for Successful Infection
by José Manuel Ulloa-Aguilar, Luis Herrera Moro Huitron, Rocío Yazmin Benítez-Zeferino, Jorge Francisco Cerna-Cortes, Julio García-Cordero, Guadalupe León-Reyes, Edgar Rodrigo Guzman-Bautista, Carlos Noe Farfan-Morales, José Manuel Reyes-Ruiz, Roxana U. Miranda-Labra, Luis Adrián De Jesús-González and Moises León-Juárez
Cells 2024, 13(18), 1591; https://doi.org/10.3390/cells13181591 - 21 Sep 2024
Cited by 4 | Viewed by 3093
Abstract
Nuclear bodies are structures in eukaryotic cells that lack a plasma membrane and are considered protein condensates, DNA, or RNA molecules. Known nuclear bodies include the nucleolus, Cajal bodies, and promyelocytic leukemia nuclear bodies. These bodies are involved in the concentration, exclusion, sequestration, [...] Read more.
Nuclear bodies are structures in eukaryotic cells that lack a plasma membrane and are considered protein condensates, DNA, or RNA molecules. Known nuclear bodies include the nucleolus, Cajal bodies, and promyelocytic leukemia nuclear bodies. These bodies are involved in the concentration, exclusion, sequestration, assembly, modification, and recycling of specific components involved in the regulation of ribosome biogenesis, RNA transcription, and RNA processing. Additionally, nuclear bodies have been shown to participate in cellular processes such as the regulation of transcription of the cell cycle, mitosis, apoptosis, and the cellular stress response. The dynamics and functions of these bodies depend on the state of the cell. It is now known that both DNA and RNA viruses can direct their proteins to nuclear bodies, causing alterations in their composition, dynamics, and functions. Although many of these mechanisms are still under investigation, it is well known that the interaction between viral and nuclear body proteins is necessary for the success of the viral infection cycle. In this review, we concisely describe the interaction between viral and nuclear body proteins. Furthermore, we focus on the role of the nucleolus in RNA virus infections. Finally, we discuss the possible implications of the interaction of viral proteins on cellular transcription and the formation/degradation of non-coding RNAs. Full article
Show Figures

Figure 1

17 pages, 2930 KiB  
Article
HPV16 Induces Formation of Virus-p62-PML Hybrid Bodies to Enable Infection
by Linda Schweiger, Laura A. Lelieveld-Fast, Snježana Mikuličić, Johannes Strunk, Kirsten Freitag, Stefan Tenzer, Albrecht M. Clement and Luise Florin
Viruses 2022, 14(7), 1478; https://doi.org/10.3390/v14071478 - 5 Jul 2022
Cited by 8 | Viewed by 3316
Abstract
Human papillomaviruses (HPVs) inflict a significant burden on the human population. The clinical manifestations caused by high-risk HPV types are cancers at anogenital sites, including cervical cancer, as well as head and neck cancers. Host cell defense mechanisms such as autophagy are initiated [...] Read more.
Human papillomaviruses (HPVs) inflict a significant burden on the human population. The clinical manifestations caused by high-risk HPV types are cancers at anogenital sites, including cervical cancer, as well as head and neck cancers. Host cell defense mechanisms such as autophagy are initiated upon HPV entry. At the same time, the virus modulates cellular antiviral processes and structures such as promyelocytic leukemia nuclear bodies (PML NBs) to enable infection. Here, we uncover the autophagy adaptor p62, also known as p62/sequestosome-1, as a novel proviral factor in infections by the high-risk HPV type 16 (HPV16). Proteomics, imaging and interaction studies of HPV16 pseudovirus-treated HeLa cells display that p62 is recruited to virus-filled endosomes, interacts with incoming capsids, and accompanies the virus to PML NBs, the sites of viral transcription and replication. Cellular depletion of p62 significantly decreased the delivery of HPV16 viral DNA to PML NBs and HPV16 infection rate. Moreover, the absence of p62 leads to an increase in the targeting of viral components to autophagic structures and enhanced degradation of the viral capsid protein L2. The proviral role of p62 and formation of virus-p62-PML hybrid bodies have also been observed in human primary keratinocytes, the HPV target cells. Together, these findings suggest the previously unrecognized virus-induced formation of p62-PML hybrid bodies as a viral mechanism to subvert the cellular antiviral defense, thus enabling viral gene expression. Full article
(This article belongs to the Special Issue Recent Advances in Papillomaviruses Research)
Show Figures

Figure 1

23 pages, 2959 KiB  
Article
The Multivalent Polyampholyte Domain of Nst1, a P-Body-Associated Saccharomyces cerevisiae Protein, Provides a Platform for Interacting with P-Body Components
by Yoon-Jeong Choi, Yujin Lee, Yuxi Lin, Yunseok Heo, Young-Ho Lee and Kiwon Song
Int. J. Mol. Sci. 2022, 23(13), 7380; https://doi.org/10.3390/ijms23137380 - 2 Jul 2022
Cited by 3 | Viewed by 2563
Abstract
The condensation of nuclear promyelocytic leukemia bodies, cytoplasmic P-granules, P-bodies (PBs), and stress granules is reversible and dynamic via liquid–liquid phase separation. Although each condensate comprises hundreds of proteins with promiscuous interactions, a few key scaffold proteins are required. Essential scaffold domain sequence [...] Read more.
The condensation of nuclear promyelocytic leukemia bodies, cytoplasmic P-granules, P-bodies (PBs), and stress granules is reversible and dynamic via liquid–liquid phase separation. Although each condensate comprises hundreds of proteins with promiscuous interactions, a few key scaffold proteins are required. Essential scaffold domain sequence elements, such as poly-Q, low-complexity regions, oligomerizing domains, and RNA-binding domains, have been evaluated to understand their roles in biomolecular condensation processes. However, the underlying mechanisms remain unclear. We analyzed Nst1, a PB-associated protein that can intrinsically induce PB component condensations when overexpressed. Various Nst1 domain deletion mutants with unique sequence distributions, including intrinsically disordered regions (IDRs) and aggregation-prone regions, were constructed based on structural predictions. The overexpression of Nst1 deletion mutants lacking the aggregation-prone domain (APD) significantly inhibited self-condensation, implicating APD as an oligomerizing domain promoting self-condensation. Remarkably, cells overexpressing the Nst1 deletion mutant of the polyampholyte domain (PD) in the IDR region (Nst1∆PD) rarely accumulate endogenous enhanced green fluorescent protein (EGFP)-tagged Dcp2. However, Nst1∆PD formed self-condensates, suggesting that Nst1 requires PD to interact with Dcp2, regardless of its self-condensation. In Nst1∆PD-overexpressing cells treated with cycloheximide (CHX), Dcp2, Xrn1, Dhh1, and Edc3 had significantly diminished condensation compared to those in CHX-treated Nst1-overexpressing cells. These observations suggest that the PD of the IDR in Nst1 functions as a hub domain interacting with other PB components. Full article
Show Figures

Figure 1

14 pages, 32021 KiB  
Article
Promyelocytic Leukemia Proteins Regulate Fanconi Anemia Gene Expression
by Anudari Munkhjargal, Myung-Jin Kim, Da-Yeon Kim, Young-Jun Jeon, Young-Hoon Kee, Lark-Kyun Kim and Yong-Hwan Kim
Int. J. Mol. Sci. 2021, 22(15), 7782; https://doi.org/10.3390/ijms22157782 - 21 Jul 2021
Cited by 3 | Viewed by 3291
Abstract
Promyelocytic leukemia (PML) protein is the core component of subnuclear structures called PML nuclear bodies that are known to play important roles in cell survival, DNA damage responses, and DNA repair. Fanconi anemia (FA) proteins are required for repairing interstrand DNA crosslinks (ICLs). [...] Read more.
Promyelocytic leukemia (PML) protein is the core component of subnuclear structures called PML nuclear bodies that are known to play important roles in cell survival, DNA damage responses, and DNA repair. Fanconi anemia (FA) proteins are required for repairing interstrand DNA crosslinks (ICLs). Here we report a novel role of PML proteins, regulating the ICL repair pathway. We found that depletion of the PML protein led to the significant reduction of damage-induced FANCD2 mono-ubiquitination and FANCD2 foci formation. Consistently, the cells treated with siRNA against PML showed enhanced sensitivity to a crosslinking agent, mitomycin C. Further studies showed that depletion of PML reduced the protein expression of FANCA, FANCG, and FANCD2 via reduced transcriptional activity. Interestingly, we observed that damage-induced CHK1 phosphorylation was severely impaired in cells with depleted PML, and we demonstrated that CHK1 regulates FANCA, FANCG, and FANCD2 transcription. Finally, we showed that inhibition of CHK1 phosphorylation further sensitized cancer cells to mitomycin C. Taken together, these findings suggest that the PML is critical for damage-induced CHK1 phosphorylation, which is important for FA gene expression and for repairing ICLs. Full article
(This article belongs to the Special Issue Molecular Target and Action Mechanism of Anti-Cancer Agents)
Show Figures

Figure 1

15 pages, 2028 KiB  
Article
Analysis of Autoantibodies against Promyelocytic Leukemia Nuclear Body Components and Biochemical Parameters in Sera of Patients with Primary Biliary Cholangitis
by Alicja Bauer, Andrzej Habior, Paulina Wieszczy and Damian Gawel
Diagnostics 2021, 11(4), 587; https://doi.org/10.3390/diagnostics11040587 - 24 Mar 2021
Cited by 8 | Viewed by 2566
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by immune-mediated destruction of intrahepatic bile ducts and the presence of specific antibodies. The aim of the study was to examine the diagnostic significance of antibodies against promyelocytic leukemia nuclear body (PML [...] Read more.
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by immune-mediated destruction of intrahepatic bile ducts and the presence of specific antibodies. The aim of the study was to examine the diagnostic significance of antibodies against promyelocytic leukemia nuclear body (PML NB) components such as Sp100, Sp140, and PML in a cohort of PBC patients and compare the results with biochemical and histological parameters. Serum samples were collected from 93 PBC patients. Anti-Sp100 and anti-PML antibodies were assessed using commercially available kits, anti-Sp140 using developed “in-house” ELISA test. Anti-Sp140, anti-Sp100, and anti-PML antibodies were present in 25 (27%), 37 (40%), and 29 (31%) PBC patients, respectively. Anti-PML NB positive patients also showed increased concentration of bilirubin and alkaline phosphatase (p < 0.05). In the group with the presence of at least two types of these antibodies, more frequent deaths or transplantations were observed. A correlation between the presence of antibodies and histological grade (OR = 2.55 p = 0.039) was established. Patients with bilirubin > 1.1 mg/dL at the time of diagnosis had a significantly shorter time of survival than patients with bilirubin ≤ 1.1 mg/dL (HR 5.7; 95% C.I., 2.7, 12.3; p < 0.001). Our data confirm very high specificity of anti-PML NB antibodies, which can expand the laboratory diagnostic capabilities of PBC. We found an association between positive reactivity of autoantibodies directed against components of PML nuclear bodies and higher concentrations of bilirubin and alkaline phosphatase, but the main prognostic marker of survival remains serum bilirubin. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

12 pages, 4996 KiB  
Article
PML Regulates the Epidermal Differentiation Complex and Skin Morphogenesis during Mouse Embryogenesis
by Anna Połeć, Alexander D. Rowe, Pernille Blicher, Rajikala Suganthan, Magnar Bjørås and Stig Ove Bøe
Genes 2020, 11(10), 1130; https://doi.org/10.3390/genes11101130 - 25 Sep 2020
Cited by 1 | Viewed by 2848
Abstract
The promyelocytic leukemia (PML) protein is an essential component of nuclear compartments called PML bodies. This protein participates in several cellular processes, including growth control, senescence, apoptosis, and differentiation. Previous studies have suggested that PML regulates gene expression at a subset of loci [...] Read more.
The promyelocytic leukemia (PML) protein is an essential component of nuclear compartments called PML bodies. This protein participates in several cellular processes, including growth control, senescence, apoptosis, and differentiation. Previous studies have suggested that PML regulates gene expression at a subset of loci through a function in chromatin remodeling. Here we have studied global gene expression patterns in mouse embryonic skin derived from Pml depleted and wild type mouse embryos. Differential gene expression analysis at different developmental stages revealed a key role of PML in regulating genes involved in epidermal stratification. In particular, we observed dysregulation of the late cornified envelope gene cluster, which is a sub-region of the epidermal differentiation complex. In agreement with these data, PML body numbers are elevated in basal keratinocytes during embryogenesis, and we observed reduced epidermal thickness and defective hair follicle development in PML depleted mouse embryos. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 254 KiB  
Review
The Role of Nuclear Antiviral Factors against Invading DNA Viruses: The Immediate Fate of Incoming Viral Genomes
by Tetsuro Komatsu, Kyosuke Nagata and Harald Wodrich
Viruses 2016, 8(10), 290; https://doi.org/10.3390/v8100290 - 22 Oct 2016
Cited by 31 | Viewed by 6362
Abstract
In recent years, it has been suggested that host cells exert intrinsic mechanisms to control nuclear replicating DNA viruses. This cellular response involves nuclear antiviral factors targeting incoming viral genomes. Herpes simplex virus-1 (HSV-1) is the best-studied model in this context, and it [...] Read more.
In recent years, it has been suggested that host cells exert intrinsic mechanisms to control nuclear replicating DNA viruses. This cellular response involves nuclear antiviral factors targeting incoming viral genomes. Herpes simplex virus-1 (HSV-1) is the best-studied model in this context, and it was shown that upon nuclear entry HSV-1 genomes are immediately targeted by components of promyelocytic leukemia nuclear bodies (PML-NBs) and the nuclear DNA sensor IFI16 (interferon gamma inducible protein 16). Based on HSV-1 studies, together with limited examples in other viral systems, these phenomena are widely believed to be a common cellular response to incoming viral genomes, although formal evidence for each virus is lacking. Indeed, recent studies suggest that the case may be different for adenovirus infection. Here we summarize the existing experimental evidence for the roles of nuclear antiviral factors against incoming viral genomes to better understand cellular responses on a virus-by-virus basis. We emphasize that cells seem to respond differently to different incoming viral genomes and discuss possible arguments for and against a unifying cellular mechanism targeting the incoming genomes of different virus families. Full article
18 pages, 4863 KiB  
Article
TRIM19/PML Restricts HIV Infection in a Cell Type-Dependent Manner
by Tanja Kahle, Bianca Volkmann, Kristin Eissmann, Alexandra Herrmann, Sven Schmitt, Sabine Wittmann, Laura Merkel, Nina Reuter, Thomas Stamminger and Thomas Gramberg
Viruses 2016, 8(1), 2; https://doi.org/10.3390/v8010002 - 23 Dec 2015
Cited by 17 | Viewed by 6861
Abstract
The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different [...] Read more.
The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different viruses. Their role during retroviral replication, however, is still controversially discussed. In this study, we analyzed the role of PML and the ND10 components Daxx and Sp100 during retroviral replication in different cell types. Using cell lines exhibiting a shRNA-mediated knockdown, we found that PML, but not Daxx or Sp100, inhibits HIV and other retroviruses in a cell type-dependent manner. The PML-mediated block to retroviral infection was active in primary human fibroblasts and murine embryonic fibroblasts but absent from T cells and myeloid cell lines. Quantitative PCR analysis of HIV cDNA in infected cells revealed that PML restricts infection at the level of reverse transcription. Our findings shed light on the controversial role of PML during retroviral infection and show that PML contributes to the intrinsic restriction of retroviral infections in a cell type-dependent manner. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

24 pages, 1670 KiB  
Article
Contribution of the Major ND10 Proteins PML, hDaxx and Sp100 to the Regulation of Human Cytomegalovirus Latency and Lytic Replication in the Monocytic Cell Line THP-1
by Nadine Wagenknecht, Nina Reuter, Myriam Scherer, Anna Reichel, Regina Müller and Thomas Stamminger
Viruses 2015, 7(6), 2884-2907; https://doi.org/10.3390/v7062751 - 5 Jun 2015
Cited by 61 | Viewed by 11092
Abstract
Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still controversial. In this study, we [...] Read more.
Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still controversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence andWestern blot analysis confirmed the expression of all major ND10 components. THP-1 cells with a stable, individual knockdown of PML, hDaxx or Sp100 were generated. Importantly, depletion of the major ND10 proteins did not prevent the terminal cellular differentiation of THP-1 monocytes. After construction of a recombinant, endotheliotropic human cytomegalovirus expressing IE2-EYFP, we investigated whether the depletion of ND10 proteins affects the onset of viral IE gene expression. While after infection of differentiated, THP-1-derived macrophages as well as during differentiation-induced reactivation from latency an increase in the number of IE-expressing cells was readily detectable in the absence of the major ND10 proteins, no effect was observed in non-differentiated monocytes. We conclude that PML, hDaxx and Sp100 primarily act as cellular restriction factors during lytic HCMV replication and during the dynamic process of reactivation but do not serve as key determinants for the establishment of HCMV latency. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop