Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = prodiginine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2158 KiB  
Article
An Algerian Soil-Living Streptomyces alboflavus Strain as Source of Antifungal Compounds for the Management of the Pea Pathogen Fusarium oxysporum f. sp. pisi
by Marco Masi, Dorsaf Nedjar, Moustafa Bani, Ivana Staiano, Maria Michela Salvatore, Karima Khenaka, Stefany Castaldi, Jesus Garcia Zorrilla, Anna Andolfi, Rachele Isticato and Alessio Cimmino
J. Fungi 2024, 10(11), 783; https://doi.org/10.3390/jof10110783 - 12 Nov 2024
Cited by 2 | Viewed by 1315
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) poses significant threats to pea cultivation worldwide. Controlling this disease is mainly achieved through the integration of various disease management procedures, among which biological control has proven to be a safe [...] Read more.
Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) poses significant threats to pea cultivation worldwide. Controlling this disease is mainly achieved through the integration of various disease management procedures, among which biological control has proven to be a safe and effective approach. This study aims to extract and identify antifungal secondary metabolites from Streptomyces alboflavus KRO3 strain and assess their effectiveness in inhibiting the in vitro growth of Fop. This bacterial strain exerts in vitro antagonistic activity against Fop, achieving highly significant inhibition over one week. The ethyl acetate extract, obtained from its ISP2 agar medium culture, also exhibited strong antifungal activity, maintaining an inhibition rate of approximately 90% at concentrations up to 250 µg/plug compared to the control. Thus, the organic extract has been fractionated using chromatographic techniques and its bioguided purification allowed us to isolate the main bioactive compound. This latter was identified as metacycloprodigiosin using nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and specific optical rotation data. Metacycloprodigiosin demonstrates dose-dependent inhibitory activity against the phytopathogen with an effective concentration of 125 µg/plug. The other secondary metabolites present in the ethyl acetate extract were also identified by gas chromatography–mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). This study highlighted the potential of S. alboflavus KRO3 strain and its antimicrobial compounds for the management of the pea pathogen Fusarium oxysporum f. sp. pisi. Full article
(This article belongs to the Special Issue Emerging Investigators in Bioactive Fungal Metabolites, 2nd Edition)
Show Figures

Figure 1

15 pages, 3592 KiB  
Article
Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma
by Margarita Espona-Fiedler, Pilar Manuel-Manresa, Cristina Benítez-García, Pere Fontova, Roberto Quesada, Vanessa Soto-Cerrato and Ricardo Pérez-Tomás
Pharmaceutics 2023, 15(1), 97; https://doi.org/10.3390/pharmaceutics15010097 - 28 Dec 2022
Cited by 9 | Viewed by 2571
Abstract
Metastasis is the primary cause of death in cancer patients. Many current chemotherapeutic agents only show cytotoxic, but not antimetastatic properties. This leads to a reduction in tumor size, but allows cancer cells to disseminate, which ultimately causes patient death. Therefore, novel anticancer [...] Read more.
Metastasis is the primary cause of death in cancer patients. Many current chemotherapeutic agents only show cytotoxic, but not antimetastatic properties. This leads to a reduction in tumor size, but allows cancer cells to disseminate, which ultimately causes patient death. Therefore, novel anticancer compounds with both effects need to be developed. In this work, we analyze the antimetastatic properties of prodigiosin and obatoclax (GX15-070), anticancer drugs of the Prodiginines (PGs) family. We studied PGs’ effects on cellular adhesion and morphology in the human primary and metastatic melanoma cell lines, SK-MEL-28 and SK-MEL-5, and in the murine melanoma cell line, B16F10A. Cell adhesion sharply decreased in the treated cells, and this was accompanied by a reduction in filopodia protrusions and a significant decrease in the number of focal-adhesion structures. Moreover, cell migration was assessed through the wound-healing assay and cell motility was severely inhibited after 24 h of treatment. To elucidate the molecular mechanisms involved, changes in metastasis-related genes were analyzed through a gene-expression array. Key genes related to cellular invasion, migration and chemoresistance were significantly down-regulated. Finally, an in vivo model of melanoma-induced lung metastasis was established and significant differences in lung tumors were observed in the obatoclax-treated mice. Altogether, these results describe, in depth, PGs’ cellular antimetastatic effects and identify in vivo antimetastatic properties of Obatoclax. Full article
(This article belongs to the Special Issue Current and Future Cancer Chemoprevention Strategies, 2nd Edition)
Show Figures

Figure 1

9 pages, 617 KiB  
Brief Report
Extraction of the Anticancer and Antimicrobial Agent, Prodigiosin, from Vibrio gazogenes PB1 and Its Identification by 1D and 2D NMR
by Dhanya Vijay, Nassra S. Alshamsi, Ziad Moussa and M. Kalim Akhtar
Molecules 2022, 27(18), 6030; https://doi.org/10.3390/molecules27186030 - 16 Sep 2022
Cited by 9 | Viewed by 3395
Abstract
Prodigiosin is a secondary metabolite produced in several species of bacteria. It exhibits antimicrobial and anticancer properties. Methods for the extraction and identification of prodigiosin and their related derivatives from bacterial cultures typically depend on solvent-based extractions followed by NMR spectroscopy. The estuarine [...] Read more.
Prodigiosin is a secondary metabolite produced in several species of bacteria. It exhibits antimicrobial and anticancer properties. Methods for the extraction and identification of prodigiosin and their related derivatives from bacterial cultures typically depend on solvent-based extractions followed by NMR spectroscopy. The estuarine bacterium, V. gazogenes PB1, was previously shown to produce prodigiosin. This conclusion, however, was based on analytical data obtained from ultraviolet-visible absorption spectrophotometry and infrared spectroscopy. Complete dependence on these techniques would be considered inadequate for the accurate identification of the various members of the prodiginine family of compounds, which possess very similar chemical structures and near-identical optical properties. In this study, we extracted prodigiosin from a culture of Vibrio gazogenes PB1 cultivated in minimal media, and for the first time, confirmed the synthesis of prodigiosin Vibrio gazogenes PB1 using NMR techniques. The chemical structure was validated by 1H and 13C NMR spectroscopy, and further corroborated by 2D NMR, which included 1H-1H-gDQFCOSY, 1H-13C-gHSQC, and 1H-13C-gHMBC, as well as 1H-1H-homonuclear decoupling experiments. Based on this data, previous NMR spectral assignments of prodigiosin are reaffirmed and in some cases, corrected. The findings will be particularly relevant for experimental work relating to the use of V. gazogenes PB1 as a host for the synthesis of prodigiosin. Full article
(This article belongs to the Special Issue Spectroscopic and Spectrometric Techniques for Structural Analysis)
Show Figures

Figure 1

18 pages, 2569 KiB  
Article
Synthesis, Anticancer Potential and Comprehensive Toxicity Studies of Novel Brominated Derivatives of Bacterial Biopigment Prodigiosin from Serratia marcescens ATCC 27117
by Jelena Lazic, Sanja Skaro Bogojevic, Sandra Vojnovic, Ivana Aleksic, Dusan Milivojevic, Martin Kretzschmar, Tanja Gulder, Milos Petkovic and Jasmina Nikodinovic-Runic
Molecules 2022, 27(12), 3729; https://doi.org/10.3390/molecules27123729 - 9 Jun 2022
Cited by 23 | Viewed by 5160
Abstract
Prodigiosins (prodiginines) are a class of bacterial secondary metabolites with remarkable biological activities and color. In this study, optimized production, purification, and characterization of prodigiosin (PG) from easily accessible Serratia marcescens ATCC 27117 strain has been achieved to levels of 14 mg/L of [...] Read more.
Prodigiosins (prodiginines) are a class of bacterial secondary metabolites with remarkable biological activities and color. In this study, optimized production, purification, and characterization of prodigiosin (PG) from easily accessible Serratia marcescens ATCC 27117 strain has been achieved to levels of 14 mg/L of culture within 24 h. Furthermore, environmentally friendly bromination of produced PG was used to afford both novel mono- and dibrominated derivatives of PG. PG and its Br derivatives showed anticancer potential with IC50 values range 0.62–17.00 µg/mL for all tested cancer cell lines and induction of apoptosis but low selectivity against healthy cell lines. All compounds did not affect Caenorhabditiselegans at concentrations up to 50 µg/mL. However, an improved toxicity profile of Br derivatives in comparison to parent PG was observed in vivo using zebrafish (Danio rerio) model system, when 10 µg/mL applied at 6 h post fertilization caused death rate of 100%, 30% and 0% by PG, PG-Br, and PG-Br2, respectively, which is a significant finding for further structural optimizations of bacterial prodigiosins. The drug-likeness of PG and its Br derivatives was examined, and the novel Br derivatives obey the Lipinski’s “rule of five”, with an exemption of being more lipophilic than PG, which still makes them good targets for further structural optimization. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

15 pages, 7594 KiB  
Article
Discovery of New Secondary Metabolites from Marine Bacteria Hahella Based on an Omics Strategy
by Shufen He, Peishan Li, Jingxuan Wang, Yanzhu Zhang, Hongmei Lu, Liufei Shi, Tao Huang, Weiyan Zhang, Lijian Ding, Shan He and Liwei Liu
Mar. Drugs 2022, 20(4), 269; https://doi.org/10.3390/md20040269 - 18 Apr 2022
Cited by 8 | Viewed by 4847
Abstract
Hahella is one characteristic genus under the Hahellaceae family and shows a good potential for synthesizing new natural products. In this study, we examined the distribution of the secondary metabolite biosynthetic gene cluster (SMBGC) under Hahella with anti-SMASH. The results derived from five [...] Read more.
Hahella is one characteristic genus under the Hahellaceae family and shows a good potential for synthesizing new natural products. In this study, we examined the distribution of the secondary metabolite biosynthetic gene cluster (SMBGC) under Hahella with anti-SMASH. The results derived from five genomes released 70 SMBGCs. On average, each strain contains 12 gene clusters, and the most abundant ones (45.7%) are from the family of non-ribosomal peptide synthetase (NRPS) and non-ribosomal peptide synthetase hybrid with polyketide synthase (NRPS/PKS), indicating a great potential to find bioactive compounds. The comparison of SMBGC between H. chejuensis and other species showed that H. chejuensis contained two times more gene clusters than H. ganghwensis. One strain, designed as NBU794, was isolated from the mangrove soil of Dongzhai Port in Haikou (China) by iChip. The 16S rRNA gene of NBU794 exhibited 99% identity to H. chejuensis KCTC 2396 and clustered with the H. chejuensis clade on the phylogenetic trees. Genome mining on strain NBU794 released 17 SMBGCs and two groups of bioactive compounds, which are chejuenolide A-C and nine prodiginines derivatives. The prodiginines derivatives include the well-known lead compound prodigiosin and two new compounds, 2-methyl-3-pentyl-4-O-methyl-prodiginine and 2-methyl-3-octyl-prodiginine, which were identified through fragmentation analysis based on LC-MS/MS. The anti-microbial activity assay showed prodigiosin and 2-methyl-3-heptyl-prodiginine exhibited the best performance in inhibiting Escherichia coli, Salmonella paratyphi B, MASA Staphylococcus aureus, Bacillus subtilis, and Candida albicans. Moreover, the yield of prodigiosin in H. chejuensis NBU794 was also evaluated, which could reach 1.40 g/L under the non-optimized condition and increase to 5.83 g/L in the modified ISP4 medium with macroporous adsorption beads added, indicating that NBU794 is a promising source of prodigiosin. Full article
Show Figures

Graphical abstract

14 pages, 1371 KiB  
Article
Tambjamines and Prodiginines: Biocidal Activity against Trypanosoma cruzi
by Rocío Herráez, Roberto Quesada, Norma Dahdah, Miguel Viñas and Teresa Vinuesa
Pharmaceutics 2021, 13(5), 705; https://doi.org/10.3390/pharmaceutics13050705 - 12 May 2021
Cited by 10 | Viewed by 2618
Abstract
The aim of this work was to explore new therapeutic options against Chagas disease by the in vitro analysis of the biocidal activities of several tambjamine and prodiginine derivatives, against the Trypanosoma cruzi CLB strain (DTU TcVI). The compounds were initially screened against [...] Read more.
The aim of this work was to explore new therapeutic options against Chagas disease by the in vitro analysis of the biocidal activities of several tambjamine and prodiginine derivatives, against the Trypanosoma cruzi CLB strain (DTU TcVI). The compounds were initially screened against epimastigotes. The five more active compounds were assayed in intracellular forms. The tambjamine MM3 and both synthetic and natural prodigiosins displayed the highest trypanocidal profiles, with IC50 values of 4.52, 0.46, and 0.54 µM for epimastigotes and 1.9, 0.57, and 0.1 µM for trypomastigotes/amastigotes, respectively. Moreover, the combination treatment of these molecules with benznidazole showed no synergism. Finally, oxygen consumption inhibition determinations performed using high-resolution respirometry, revealed a potent effect of prodigiosin on parasite respiration (73% of inhibition at ½ IC50), suggesting that its mode of action involves the mitochondria. Moreover, its promising selectivity index (50) pointed out an interesting trypanocidal potential and highlighted the value of prodigiosin as a new candidate to fight Chagas disease. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

14 pages, 3184 KiB  
Article
Prodiginines Postpone the Onset of Sporulation in Streptomyces coelicolor
by Elodie Tenconi, Matthew Traxler, Déborah Tellatin, Gilles P. van Wezel and Sébastien Rigali
Antibiotics 2020, 9(12), 847; https://doi.org/10.3390/antibiotics9120847 - 26 Nov 2020
Cited by 11 | Viewed by 3026
Abstract
Bioactive natural products are typically secreted by the producer strain. Besides that, this allows the targeting of competitors, also filling a protective role, reducing the chance of self-killing. Surprisingly, DNA-degrading and membrane damaging prodiginines (PdGs) are only produced intracellularly, and are required for [...] Read more.
Bioactive natural products are typically secreted by the producer strain. Besides that, this allows the targeting of competitors, also filling a protective role, reducing the chance of self-killing. Surprisingly, DNA-degrading and membrane damaging prodiginines (PdGs) are only produced intracellularly, and are required for the onset of the second round of programmed cell death (PCD) in Streptomyces coelicolor. In this work, we investigated the influence of PdGs on the timing of the morphological differentiation of S. coelicolor. The deletion of the transcriptional activator gene redD that activates the red cluster for PdGs or nutrient-mediated reduction of PdG synthesis both resulted in the precocious appearance of mature spore chains. Transcriptional analysis revealed an accelerated expression of key developmental genes in the redD null mutant, including bldN for the developmental σ factor BldN which is essential for aerial mycelium formation. In contrast, PdG overproduction due to the enhanced copy number of redD resulted in a delay or block in sporulation. In addition, confocal fluorescence microscopy revealed that the earliest aerial hyphae do not produce PdGs. This suggests that filaments that eventually differentiate into spore chains and are hence required for survival of the colony, are excluded from the second round of PCD induced by PdGs. We propose that one of the roles of PdGs would be to delay the entrance of S. coelicolor into the dormancy state (sporulation) by inducing the leakage of the intracellular content of dying filaments thereby providing nutrients for the survivors. Full article
Show Figures

Figure 1

18 pages, 4980 KiB  
Article
Prodigiosin Modulates the Immune Response and Could Promote a Stable Atherosclerotic Lession in C57bl/6 Ldlr-/- Mice
by Alejandro Cuevas, Nicolás Saavedra, Luis A. Salazar, Marcela F. Cavalcante, Jacqueline C. Silva and Dulcineia S. P. Abdalla
Int. J. Mol. Sci. 2020, 21(17), 6417; https://doi.org/10.3390/ijms21176417 - 3 Sep 2020
Cited by 8 | Viewed by 2925
Abstract
Atherosclerosis is a chronic inflammatory disease, whose progression and stability are modulated, among other factors, by an innate and adaptive immune response. Prodiginines are bacterial secondary metabolites with antiproliferative and immunomodulatory activities; however, their effect on the progression or vulnerability of atheromatous plaque [...] Read more.
Atherosclerosis is a chronic inflammatory disease, whose progression and stability are modulated, among other factors, by an innate and adaptive immune response. Prodiginines are bacterial secondary metabolites with antiproliferative and immunomodulatory activities; however, their effect on the progression or vulnerability of atheromatous plaque has not been evaluated. This study assessed the therapeutic potential of prodigiosin and undecylprodigiosin on inflammatory marker expression and atherosclerosis. An in vitro and in vivo study was carried out. Migration, low-density lipoprotein (LDL) uptake and angiogenesis assays were performed on cell types involved in the pathophysiology of atherosclerosis. In addition, male LDL receptor null (Ldlr-/-) C57BL/6J mice were treated with prodigiosin or undecylprodigiosin for 28 days. Morphometric analysis of atherosclerotic plaques, gene expression of atherogenic factors in the aortic sinus and serum cytokine quantification were performed. The treatments applied had slight effects on the in vitro tests performed, highlighting the inhibitory effect on the migration of SMCs (smooth muscle cells). On the other hand, although no significant difference in atherosclerotic plaque progression was observed, gene expression of IL-4 and chemokine (C-C motif) ligand 2 (Ccl2) was downregulated. In addition, 50 µg/Kg/day of both treatments was sufficient to inhibit circulating tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2) and interferon-gamma (IFN-γ) in serum. These results suggested that prodigiosin and undecylprodigiosin modulated inflammatory markers and could have an impact in reducing atherosclerotic plaque vulnerability. Full article
Show Figures

Figure 1

15 pages, 3058 KiB  
Article
Prodigiosin-Emerged PI3K/Beclin-1-Independent Pathway Elicits Autophagic Cell Death in Doxorubicin-Sensitive and -Resistant Lung Cancer
by Wei-Jun Chiu, Shian-Ren Lin, Yu-Hsin Chen, May-Jwan Tsai, Max K. Leong and Ching-Feng Weng
J. Clin. Med. 2018, 7(10), 321; https://doi.org/10.3390/jcm7100321 - 3 Oct 2018
Cited by 32 | Viewed by 4294
Abstract
Prodigiosin (PG) belongs to a family of prodiginines isolated from gram-negative bacteria. It is a water insoluble red pigment and a potent proapoptotic compound. This study elucidates the anti-tumor activity and underlying mechanism of PG in doxorubicin-sensitive (Dox-S) and doxorubicin-resistant (Dox-R) lung cancer [...] Read more.
Prodigiosin (PG) belongs to a family of prodiginines isolated from gram-negative bacteria. It is a water insoluble red pigment and a potent proapoptotic compound. This study elucidates the anti-tumor activity and underlying mechanism of PG in doxorubicin-sensitive (Dox-S) and doxorubicin-resistant (Dox-R) lung cancer cells. The cytotoxicity and cell death characteristics of PG in two cells were measured by MTT assay, cell cycle analysis, and apoptosis/autophagic marker analysis. Then, the potential mechanism of PG-induced cell death was evaluated through the phosphatidylinositol-4,5-bisphosphate 3-kinase-p85/Protein kinase B /mammalian target of rapamycin (PI3K-p85/Akt/mTOR) and Beclin-1/phosphatidylinositol-4,5-bisphosphate 3-kinase-Class III (Beclin-1/PI3K-Class III) signaling. Finally, in vivo efficacy was examined by intratracheal inoculation and treatment. There was similar cytotoxicity with PG in both Dox-S and Dox-R cells, where the half maximal inhibitory concentrations (IC50) were all in 10 μM. Based on a non-significant increase in the sub-G1 phase with an increase of microtubule-associated proteins 1A/1B light chain 3B-phosphatidylethanolamine conjugate (LC3-II), the cell death of both cells was categorized to achieve autophagy. Interestingly, an increase in cleaved-poly ADP ribose polymerase (cleaved-PARP) also showed the existence of an apoptosis-sensitive subpopulation. In both Dox-S and Dox-R cells, PI3K-p85/Akt/mTOR signaling pathways were reduced, which inhibited autophagy initiation. However, Beclin-1/PI3K-Class III downregulation implicated non-canonical autophagy pathways were involved in PG-induced autophagy. At completion of the PG regimen, tumors accumulated in the mice trachea and were attenuated by PG treatment, which indicated the efficacy of PG for both Dox-S and Dox-R lung cancer. All the above results concluded that PG is a potential chemotherapeutic agent for lung cancer regimens regardless of doxorubicin resistance. Full article
Show Figures

Figure 1

Back to TopTop