Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = previtellogenesis stages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1471 KiB  
Review
Vitellogenesis and Embryogenesis in Spiders: A Biochemical Perspective
by Carlos Fernando Garcia, Aldana Laino and Mónica Cunningham
Insects 2025, 16(4), 398; https://doi.org/10.3390/insects16040398 - 10 Apr 2025
Cited by 1 | Viewed by 3306
Abstract
This review compiles information on the biochemistry of spider reproduction, from vitellogenesis to postembryonic development. Despite the diversity of spiders, biochemical studies on their reproduction remain scarce. The structures, functions, and relationships of vitellogenins and lipovitellins across different groups are compared. Information on [...] Read more.
This review compiles information on the biochemistry of spider reproduction, from vitellogenesis to postembryonic development. Despite the diversity of spiders, biochemical studies on their reproduction remain scarce. The structures, functions, and relationships of vitellogenins and lipovitellins across different groups are compared. Information on two vitellogenin-associated proteins (30 and 47 kDa) is presented and discussed. By analyzing females at different reproductive stages—previtellogenesis, early vitellogenesis, vitellogenesis, and postvitellogenesis—as well as males, we examined lipid and fatty acid synthesis, mobilization, and accumulation in the yolk. Lipid dynamics across vitellogenic organs, such as the intestinal diverticula, hemolymph, and ovaries, were established. Structural lipids, mainly phosphatidylcholine and phosphatidylethanolamine, were the predominant yolk components, followed by triacylglycerols. The gonadosomatic and hepatosomatic indices are described for the first time in spiders, providing a new tool for studying vitellogenesis. Hemocyanin was detected in early spider eggs, suggesting a role in organogenesis, with its concentration increasing in later embryonic stages. In contrast, lipovitellin consumption was observed throughout embryonic development until juvenile emergence. The data compiled in this review provide valuable insights into the molecular interactions underlying a key process for oviparous animals. Full article
(This article belongs to the Special Issue Arthropod Reproductive Biology)
Show Figures

Figure 1

16 pages, 15994 KiB  
Article
Chronological Changes in Gonadotropin-Releasing Hormone 1, Gonadotropins, and Sex Steroid Hormones along the Brain–Pituitary–Gonadal Axis during Gonadal Sex Differentiation and Development in the Longtooth Grouper, Epinephelus bruneus
by Wengang Xu, Hisashi Chuda, Kiyoshi Soyano, Jun Zeng, Weiping Mei and Huafeng Zou
Cells 2023, 12(22), 2634; https://doi.org/10.3390/cells12222634 - 16 Nov 2023
Cited by 1 | Viewed by 1736
Abstract
(1) Fshβ and Lhβ showed stronger signals and higher transcript levels from 590 to 1050 dph than at earlier stages, implying their active involvement during primary oocyte development. (2) Fshβ and Lhβ at lower levels were detected during the phases of ovarian differentiation [...] Read more.
(1) Fshβ and Lhβ showed stronger signals and higher transcript levels from 590 to 1050 dph than at earlier stages, implying their active involvement during primary oocyte development. (2) Fshβ and Lhβ at lower levels were detected during the phases of ovarian differentiation and oogonial proliferation. (3) E2 concentrations increased significantly at 174, 333, and 1435 dph, while T concentrations exhibited significant increases at 174 and 333 dph. These findings suggest potential correlations between serum E2 concentrations and the phases of oogonial proliferation and pre-vitellogenesis. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Graphical abstract

17 pages, 9508 KiB  
Article
Molecular Markers of Ovarian Germ Cells of Banana Prawn (Fenneropenaeus merguiensis)
by Tatiyavadee Sengseng, Tomoyuki Okutsu, Anida Songnui, Jaruwan Boonchuay, Chanida Sakunrang and Monwadee Wonglapsuwan
Curr. Issues Mol. Biol. 2023, 45(7), 5708-5724; https://doi.org/10.3390/cimb45070360 - 7 Jul 2023
Viewed by 1662
Abstract
The banana prawn (Fenneropenaeus merguiensis) is a valuable prawn in the worldwide market. However, cultivation of this species is limited owing to the difficulty in culture management and limited knowledge of reproduction. Therefore, we studied the gene expression and molecular mechanisms [...] Read more.
The banana prawn (Fenneropenaeus merguiensis) is a valuable prawn in the worldwide market. However, cultivation of this species is limited owing to the difficulty in culture management and limited knowledge of reproduction. Therefore, we studied the gene expression and molecular mechanisms involved in oogenesis for elucidating ovarian germ cell development in banana prawns. The tissue-specific distribution of certain genes identified from previous transcriptome data showed that FmCyclinB, FmNanos, and nuclear autoantigenic sperm protein (FmNASP) were only expressed in gonads. The in situ hybridization (ISH) of these three genes showed different expression patterns throughout oogenesis. FmCyclinB was highly expressed in pre-vitellogenic oocytes. FmNanos was expressed at almost the same level during oogenesis but showed the most expression in late pre-vitellogenic stages. Based on the highest expression of FmCyclinB and FmNanos in mid pre-vitellogenic and late pre-vitellogenic oocytes, respectively, we suggested that FmNanos may suppress FmCyclinB expression before initiation of vitellogenesis. Meanwhile, FmNASP expression was detected only in pre-vitellogenesis. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) analysis of FmNASP expression was supported by FmNASP ISH analysis based on high expression of FmNASP in sub-adult ovaries, which contain most of pre-vitellogenic oocytes. In this study, we found three reliable ovarian markers for banana prawns and also found a dynamic change of molecular mechanism during the sub-stage of pre-vitellogenesis. We determined the expression levels of these genes involved in oogenesis. Our findings provide information for further studies on banana prawn reproduction which may assist in their cultivation. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

12 pages, 2066 KiB  
Article
Hemolymph Ecdysteroid Titer Affects Maternal mRNAs during Bombyx mori Oogenesis
by Meirong Zhang, Pingzhen Xu and Tao Chen
Insects 2021, 12(11), 969; https://doi.org/10.3390/insects12110969 - 27 Oct 2021
Cited by 2 | Viewed by 2789
Abstract
Silkworm larval–pupal metamorphosis and the first half of pupal–adult development occur during oogenesis from previtellogenesis to vitellogenesis and include two peaks of the hemolymph ecdysteroid titer. Moreover, a rise in 20-hydroxyecdysone titer in early pupae can trigger the first major transition from previtellogenesis [...] Read more.
Silkworm larval–pupal metamorphosis and the first half of pupal–adult development occur during oogenesis from previtellogenesis to vitellogenesis and include two peaks of the hemolymph ecdysteroid titer. Moreover, a rise in 20-hydroxyecdysone titer in early pupae can trigger the first major transition from previtellogenesis to vitellogenesis in silkworm oogenesis. In this study, we first investigated the expression patterns of 66 maternal genes in the ovary at the wandering stage. We then examined the developmental expression profiles in six time-series samples of ovaries or ovarioles by reverse transcription–quantitative PCR. We found that the transcripts of 22 maternal genes were regulated by 20-hydroxyecdysone in the isolated abdomens of the pupae following a single injection of 20-hydroxyecdysone. This study is the first to determine the relationship between 20-hydroxyecdysone and maternal genes during silkworm oogenesis. These findings provide a basis for further research into the embryonic development of Bombyx mori. Full article
(This article belongs to the Special Issue Silkworm and Silk: Traditional and Innovative Applications)
Show Figures

Figure 1

15 pages, 4469 KiB  
Article
Characterization of the Polysialylation Status in Ovaries of the Salmonid Fish Coregonus maraena and the Percid Fish Sander lucioperca
by Marzia Tindara Venuto, Joan Martorell-Ribera, Ralf Bochert, Anne Harduin-Lepers, Alexander Rebl and Sebastian Peter Galuska
Cells 2020, 9(11), 2391; https://doi.org/10.3390/cells9112391 - 31 Oct 2020
Cited by 6 | Viewed by 3030
Abstract
In vertebrates, the carbohydrate polymer polysialic acid (polySia) is especially well known for its essential role during neuronal development, regulating the migration and proliferation of neural precursor cells, for instance. Nevertheless, sialic acid polymers seem to be regulatory elements in other physiological systems, [...] Read more.
In vertebrates, the carbohydrate polymer polysialic acid (polySia) is especially well known for its essential role during neuronal development, regulating the migration and proliferation of neural precursor cells, for instance. Nevertheless, sialic acid polymers seem to be regulatory elements in other physiological systems, such as the reproductive tract. Interestingly, trout fish eggs have polySia, but we know little of its cellular distribution and role during oogenesis. Therefore, we localized α2,8-linked N-acetylneuraminic acid polymers in the ovaries of Coregonus maraena by immunohistochemistry and found that prevalent clusters of oogonia showed polySia signals on their surfaces. Remarkably, the genome of this salmonid fish contains two st8sia2 genes and one st8sia4 gene, that is, three polysialyltransferases. The expression analysis revealed that for st8sia2-r2, 60 times more mRNA was present than st8sia2-r1 and st8sia4. To compare polysialylation status regarding various polySiaT configurations, we performed a comparable analysis in Sander lucioperca. The genome of this perciform fish contains only one st8sia2 and no st8sia4 gene. Here, too, clusters of oogonia showed polysialylated cell surfaces, and we detected high mRNA values for st8sia2. These results suggest that in teleosts, polySia is involved in the cellular processes of oogonia during oogenesis. Full article
(This article belongs to the Special Issue Sugars on Cell Surfaces and Their Biological Purposes)
Show Figures

Figure 1

11 pages, 1757 KiB  
Article
Vitellogenesis in Blue Gourami is Accompanied by Brain Transcriptome Changes
by Gad Degani, Amir Alon, Akram Hajouj and Ari Meerson
Fishes 2019, 4(4), 54; https://doi.org/10.3390/fishes4040054 - 29 Oct 2019
Cited by 3 | Viewed by 3971
Abstract
The blue gourami (Trichogaster trichopterus) is a model for hormonal control of reproduction in Anabantidae fish, but also relevant to other vertebrates. We analyzed the female blue gourami brain transcriptome in two developmental stages: pre-vitellogenesis (PVTL) before yolk accumulation in the [...] Read more.
The blue gourami (Trichogaster trichopterus) is a model for hormonal control of reproduction in Anabantidae fish, but also relevant to other vertebrates. We analyzed the female blue gourami brain transcriptome in two developmental stages: pre-vitellogenesis (PVTL) before yolk accumulation in the oocytes, and high vitellogenesis (HVTL) at the end of yolk accumulation in the oocytes. RNA sequencing of whole-brain transcriptome identified 34,368 unique transcripts, 23,710 of which could be annotated by homology with other species. We focused on the transcripts showing significant differences between the stages. Seventeen and fourteen annotated genes were found to be upregulated in PVTL and HVTL, respectively. Five nuclear transcripts, three of which contain the homeobox domain (ARX, DLX5, CERS6), were upregulated in PVTL. Additionally, several receptors previously known to be involved in reproduction were identified, and three of these, G-protein coupled receptor 54, Membrane progesterone receptor epsilon, and Gonadotropin-releasing hormone II receptor (GPCR, mPR, and GnRHR) were measured by quantitative RT-PCR in brain, pituitary, and ovary samples from PVTL and HVTL stage females. Of these, GPCR was highly expressed in the brain and pituitary as compared to the ovary in both PVTL and HVTL. GnRHR was highly expressed in the ovary compared to the brain and pituitary, and its levels in the brain were significantly higher in PVTL than HVTL. Brain mPR mRNA levels were likewise higher in PVTL than HVTL. In conclusion, this study details changes in the female blue gourami brain transcriptome through yolk accumulation in the oocytes and identifies key genes that may mediate this process. Full article
Show Figures

Graphical abstract

14 pages, 3135 KiB  
Review
Structures Associated with Oogenesis and Embryonic Development during Intraovarian Gestation in Viviparous Teleosts (Poeciliidae)
by Mari Carmen Uribe, Gabino De la Rosa Cruz, Adriana García Alarcón, Juan Carlos Campuzano Caballero and María Guadalupe Guzmán Bárcenas
Fishes 2019, 4(2), 35; https://doi.org/10.3390/fishes4020035 - 19 Jun 2019
Cited by 11 | Viewed by 8022
Abstract
Viviparity in teleosts involves, invariably, the ovary in a gestational role. This type of viviparity is due to the combination of unique aspects, different from those found in the rest of vertebrates. These aspects are: The ovary has a saccular structure; the germinal [...] Read more.
Viviparity in teleosts involves, invariably, the ovary in a gestational role. This type of viviparity is due to the combination of unique aspects, different from those found in the rest of vertebrates. These aspects are: The ovary has a saccular structure; the germinal epithelium lines the ovarian lumen; the absence of oviducts; and the intraovarian insemination, fertilization, and gestation. The communication of the germinal zone of the ovary to the exterior is via the caudal zone of the ovary—the gonoduct. The germinal epithelium is composed of oogonia and oocytes scattered individually or in cell nests among somatic epithelial cells. In the ovarian stroma the follicles are included which are formed by the oocyte, which is surrounded by follicular cells and the vascularized theca. The oogenesis comprises three stages: chromatin-nucleolus, previtellogenesis, and vitellogenesis. There is no ovulation, as the oocyte is retained in the follicle. During the insemination, the spermatozoa enter into the ovarian lumen and the intrafollicular fertilization occurs, followed by intrafollicular gestation. The intraovarian gestation of poeciliids involves morphological characteristics associated with the intrafollicular embryogenesis and types of nutrition, such as lecithotrophy and matrotrophy. In lecithotrophy, the nutrients come from the yolk reserves stored during oogenesis, whereas in matrotrophy the nutrients are provided by supplies from maternal tissues to the embryo during gestation. The maternal–embryonic metabolic interchanges converge through the development of the association of maternal and embryonic blood vessels, establishing a follicular placenta. Full article
(This article belongs to the Special Issue Fish Reproductive Physiology and Aquaculture)
Show Figures

Figure 1

Back to TopTop