Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = presolar grains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1767 KiB  
Article
The Evolution of Mineral Hardness Reveals Both Changing Parageneses and Preservational Bias in the Mineralogical Record
by Marko Bermanec, Ahmed M. Eleish, Shaunna M. Morrison, Anirudh Prabhu, Michael L. Wong and Robert M. Hazen
Minerals 2023, 13(8), 1089; https://doi.org/10.3390/min13081089 - 15 Aug 2023
Cited by 6 | Viewed by 2157
Abstract
A survey of the average Mohs hardness of minerals throughout Earth’s history reveals a significant and systematic decrease from >6 in presolar grains to ~5 for Archean lithologies to <4 for Phanerozoic minerals. Two primary factors contribute to this temporal decrease in the [...] Read more.
A survey of the average Mohs hardness of minerals throughout Earth’s history reveals a significant and systematic decrease from >6 in presolar grains to ~5 for Archean lithologies to <4 for Phanerozoic minerals. Two primary factors contribute to this temporal decrease in the average Mohs hardness. First, selective losses of softer minerals throughout billions of years of near-surface processing lead to preservational biases in the mineral record. Second, changes in the processes of mineral formation play a significant role because more ancient refractory stellar phases and primary igneous minerals of the Hadean/Archean Eon are intrinsically harder than more recently weathered products, especially following the Paleoproterozoic Great Oxidation Event and the production of Phanerozoic biominerals. Additionally, anthropogenic sampling biases resulting from the selective exploration and curation of the mineralogical record may be superimposed on these two factors. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 1789 KiB  
Article
On the Nucleosynthetic Origin of Presolar Silicon Carbide X-Grains
by Waheed Akram, Oliver Hallmann, Bernd Pfeiffer and Karl-Ludwig Kratz
Universe 2022, 8(12), 629; https://doi.org/10.3390/universe8120629 - 28 Nov 2022
Cited by 1 | Viewed by 1846
Abstract
In this paper we present an extension of our nucleosynthesis parameter study within the classical neutrino-driven wind scenario of core-collapse supernovae (ccSNe). The principal aim of this decade-old study was to shine light on the production of the historical ‘p-only’ isotopes of the [...] Read more.
In this paper we present an extension of our nucleosynthesis parameter study within the classical neutrino-driven wind scenario of core-collapse supernovae (ccSNe). The principal aim of this decade-old study was to shine light on the production of the historical ‘p-only’ isotopes of the light trans-Fe elements in the Solar System (S.S.). One of our earliest key findings was the co-production of neighbouring classical ‘s-only’ and ‘r-only’ isotopes between Zn (Z = 30) and Ru (Z = 44), alongside the synthesis of light p-isotopes, under similar conditions of a moderately neutron-rich, low-entropy, charged-particle component of Type II SNe wind ejecta. We begin this analysis by expressing the need for nuclear-structure input from detailed spectroscopic experiments and microscopic models in the relevant shape-transition mass region between N = 50 and N = 60. Then, we focus on the unique nucleosynthetic origin of the anomalous isotopic compositions of Zr (Z = 40), Mo (Z = 42) and Ru (Z = 44) in presolar silicon carbide X-grains. In contrast to the interpretation of other studies, we show that these grains do not reflect the signature of a ‘clean’ stellar scenario but are mixtures of an exotic rapid (r-process like) nucleosynthesis component and different fractions of S.S. material. Thus, the synthesis of these light isotopes through a ‘primary’ production mode provides further means to revise the abundance estimates of the light trans-Fe elements in the S.S., reducing our dependence on still favoured ‘secondary’ scenarios like Type Ia SNe or neutron-bursts in exploding massive stars. Full article
Show Figures

Figure 1

18 pages, 4906 KiB  
Review
Slow Neutron-Capture Process: Low-Mass Asymptotic Giant Branch Stars and Presolar Silicon Carbide Grains
by Nan Liu, Sergio Cristallo and Diego Vescovi
Universe 2022, 8(7), 362; https://doi.org/10.3390/universe8070362 - 30 Jun 2022
Cited by 7 | Viewed by 2030
Abstract
Presolar grains are microscopic dust grains that formed in the stellar winds or explosions of ancient stars that died before the formation of the solar system. The majority (~90% in number) of presolar silicon carbide (SiC) grains, including types mainstream (MS), Y, and [...] Read more.
Presolar grains are microscopic dust grains that formed in the stellar winds or explosions of ancient stars that died before the formation of the solar system. The majority (~90% in number) of presolar silicon carbide (SiC) grains, including types mainstream (MS), Y, and Z, came from low-mass C-rich asymptotic giant branch (AGB) stars, which is supported by the ubiquitous presence of SiC dust observed in the circumstellar envelope of AGB stars and the signatures of slow neutron-capture process preserved in these grains. Here, we review the status of isotope studies of presolar AGB SiC grains with an emphasis on heavy element isotopes and highlight the importance of presolar grain studies for nuclear astrophysics. We discuss the sensitives of different types of nuclei to varying AGB stellar parameters and how their abundances in presolar AGB SiC grains can be used to provide independent, detailed constraints on stellar parameters, including 13C formation, stellar temperature, and nuclear reaction rates. Full article
Show Figures

Figure 1

20 pages, 799 KiB  
Review
Mixing and Magnetic Fields in Asymptotic Giant Branch Stars in the Framework of FRUITY Models
by Diego Vescovi
Universe 2022, 8(1), 16; https://doi.org/10.3390/universe8010016 - 28 Dec 2021
Cited by 6 | Viewed by 3981
Abstract
In the last few years, the modeling of asymptotic giant branch (AGB) stars has been much investigated, both focusing on nucleosynthesis and stellar evolution aspects. Recent advances in the input physics required for stellar computations made it possible to construct more accurate evolutionary [...] Read more.
In the last few years, the modeling of asymptotic giant branch (AGB) stars has been much investigated, both focusing on nucleosynthesis and stellar evolution aspects. Recent advances in the input physics required for stellar computations made it possible to construct more accurate evolutionary models, which are an essential tool to interpret the wealth of available observational and nucleosynthetic data. Motivated by such improvements, the FUNS stellar evolutionary code has been updated. Nonetheless, mixing processes occurring in AGB stars’ interiors are currently not well-understood. This is especially true for the physical mechanism leading to the formation of the 13C pocket, the major neutron source in low-mass AGB stars. In this regard, post-processing s-process models assuming that partial mixing of protons is induced by magneto-hydrodynamics processes were shown to reproduce many observations. Such mixing prescriptions have now been implemented in the FUNS code to compute stellar models with fully coupled nucleosynthesis. Here, we review the new generation of FRUITY models that include the effects of mixing triggered by magnetic fields by comparing theoretical findings with observational constraints available either from the isotopic analysis of trace-heavy elements in presolar grains or from carbon AGB stars and Galactic open clusters. Full article
Show Figures

Figure 1

15 pages, 684 KiB  
Article
Group II Oxide Grains: How Massive Are Their AGB Star Progenitors?
by Sara Palmerini, Sergio Cristallo, Luciano Piersanti, Diego Vescovi and Maurizio Busso
Universe 2021, 7(6), 175; https://doi.org/10.3390/universe7060175 - 1 Jun 2021
Cited by 9 | Viewed by 2089
Abstract
Presolar grains and their isotopic compositions provide valuable constraints to AGB star nucleosynthesis. However, there is a sample of O- and Al-rich dust, known as group 2 oxide grains, whose origin is difficult to address. On the one hand, the 17O [...] Read more.
Presolar grains and their isotopic compositions provide valuable constraints to AGB star nucleosynthesis. However, there is a sample of O- and Al-rich dust, known as group 2 oxide grains, whose origin is difficult to address. On the one hand, the 17O/16O isotopic ratios shown by those grains are similar to the ones observed in low-mass red giant stars. On the other hand, their large 18O depletion and 26Al enrichment are challenging to account for. Two different classes of AGB stars have been proposed as progenitors of this kind of stellar dust: intermediate mass AGBs with hot bottom burning, or low mass AGBs where deep mixing is at play. Our models of low-mass AGB stars with a bottom-up deep mixing are shown to be likely progenitors of group 2 grains, reproducing together the 17O/16O, 18O/16O and 26Al/27Al values found in those grains and being less sensitive to nuclear physics inputs than our intermediate-mass models with hot bottom burning. Full article
(This article belongs to the Special Issue AGB Stars: Element Forges of the Universe)
Show Figures

Figure 1

Back to TopTop