Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = presence-absence variation (PAV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 498 KiB  
Review
Functional Genomics: From Soybean to Legume
by Can Zhou, Haiyan Wang, Xiaobin Zhu, Yuqiu Li, Bo Zhang, Million Tadege, Shihao Wu, Zhaoming Qi and Zhengjun Xia
Int. J. Mol. Sci. 2025, 26(13), 6323; https://doi.org/10.3390/ijms26136323 - 30 Jun 2025
Viewed by 536
Abstract
The Fabaceae family, the third-largest among flowering plants, is nutritionally vital, providing rich sources of protein, dietary fiber, vitamins, and minerals. Leguminous plants, such as soybeans, peas, and chickpeas, typically contain two to three times more protein than cereals like wheat and rice, [...] Read more.
The Fabaceae family, the third-largest among flowering plants, is nutritionally vital, providing rich sources of protein, dietary fiber, vitamins, and minerals. Leguminous plants, such as soybeans, peas, and chickpeas, typically contain two to three times more protein than cereals like wheat and rice, with low fat content (primarily unsaturated fats) and no cholesterol, making them essential for cardiovascular health and blood sugar management. Since the release of the soybean genome in 2010, genomic research in Fabaceae has advanced dramatically. High-quality reference genomes have been assembled for key species, including soybeans (Glycine max), common beans (Phaseolus vulgaris), chickpeas (Cicer arietinum), and model legumes like Medicago truncatula and Lotus japonicus, leveraging long-read sequencing, single-cell technologies, and improved assembly algorithms. These advancements have enabled telomere-to-telomere (T2T) assemblies, pan-genome constructions, and the identification of structural variants (SVs) and presence/absence variations (PAVs), enriching our understanding of genetic diversity and domestication history. Functional genomic tools, such as CRISPR-Cas9 gene editing, mutagenesis, and high-throughput omics (transcriptomics, metabolomics), have elucidated regulatory networks controlling critical traits like photoperiod sensitivity (e.g., E1 and Tof16 genes in soybeans), seed development (GmSWEET39 for oil/protein transport), nitrogen fixation efficiency, and stress resilience (e.g., Rpp3 for rust resistance). Genome-wide association studies (GWAS) and comparative genomics have further linked genetic variants to agronomic traits, such as pod size in peanuts (PSW1) and flowering time in common beans (COL2). This review synthesizes recent breakthroughs in legume genomics, highlighting the integration of multi-omic approaches to accelerate gene cloning and functional confirmation of the genes cloned. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
16 pages, 10939 KiB  
Communication
The Geographic Distribution and Natural Variation of the Rice Blast Fungus Avirulence Gene AVR-Pita1 in Southern China
by Xinwei Chen, Xin Liu, Xiaochun Hu, Zhouyi Tu, Jun Fu, Liping Zhong, Nan Jiang and Yuanzhu Yang
Plants 2025, 14(8), 1210; https://doi.org/10.3390/plants14081210 - 15 Apr 2025
Viewed by 613
Abstract
The avirulence (AVR) genes of the filamentous ascomycete fungus Magnaporthe oryzae (M. oryzae) are known to mutate rapidly under a higher selection pressure, allowing the pathogen to evade recognition by rice resistance (R) genes. Understanding the geographic distribution [...] Read more.
The avirulence (AVR) genes of the filamentous ascomycete fungus Magnaporthe oryzae (M. oryzae) are known to mutate rapidly under a higher selection pressure, allowing the pathogen to evade recognition by rice resistance (R) genes. Understanding the geographic distribution and natural variation of AVR genes is critical for the rational utilization and prolonging of the effectiveness of R genes. In this study, a total of 1060 M. oryzae strains collected from 19 rice blast nurseries in 13 provinces across southern China were subjected to presence/absence variation (PAV), genetic variation, and virulence analyses of the AVR-Pita1 gene. PCR amplification results indicated that AVR-Pita1 was present in only 57.45% of the blast strains, with significant geographic variation in distribution frequency. Specifically, the highest frequency (100%) was observed in strains from Chengmai, Hainan, while the lowest (1.79%) was observed in strains from Baoshan, Yunnan. A sequencing analysis identified 29 haplotypes of AVR-Pita1, characterized by insertions, deletions, and base substitutions. A phylogenetic analysis indicated that haplotypes of AVR-Pita1 identified in this study were clustered into one clade. A further amino acid sequence analysis of these haplotypes led to the identification of 25 protein variants. Notably, four haplotypes of AVR-Pita1 exhibited pathogenicity toward its corresponding rice R gene, PtrA. Additionally, we performed allele profiling of Ptr in a collection of elite parental lines that are widely used in rice breeding in southern China and found that the functional Ptr alleles (PtrA, PtrB, and PtrC) accounted for over 70%. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

18 pages, 5447 KiB  
Article
Genome Assembly and Structural Variation Analysis of Luffa acutangula Provide Insights on Flowering Time and Ridge Development
by Aizheng Huang, Shuo Feng, Zhuole Ye, Ting Zhang, Shenglong Chen, Changming Chen and Shijun Chen
Plants 2024, 13(13), 1828; https://doi.org/10.3390/plants13131828 - 3 Jul 2024
Viewed by 1704
Abstract
Luffa spp. is an important worldwide cultivated vegetable and medicinal plant from the Cucurbitaceae family. In this study, we report a high-quality chromosome-level genome of the high-generation inbred line SG261 of Luffa acutangula. The genomic sequence was determined by PacBio long reads, Hi-C [...] Read more.
Luffa spp. is an important worldwide cultivated vegetable and medicinal plant from the Cucurbitaceae family. In this study, we report a high-quality chromosome-level genome of the high-generation inbred line SG261 of Luffa acutangula. The genomic sequence was determined by PacBio long reads, Hi-C sequencing reads, and 10× Genomics sequencing, with an assembly size of 739.82 Mb, contig N50 of 18.38 Mb, and scaffold N50 of 56.08 Mb. The genome of L. acutangula SG261 was predicted to contain 27,312 protein-coding genes and 72.56% repetitive sequences, of which long terminal repeats (LTRs) were an important form of repetitive sequences, accounting for 67.84% of the genome. Phylogenetic analysis reveals that L. acutangula evolved later than Luffa cylindrica, and Luffa is closely related to Momodica charantia. Comparing the genome of L. acutangula SG261 and L. cylindrica with PacBio data, 67,128 high-quality structural variations (SVs) and 55,978 presence-absence variations (PAVs) were identified in SG261, resulting in 2424 and 1094 genes with variation in the CDS region, respectively, and there are 287 identical genes affected by two different structural variation analyses. In addition, we found that the transcription factor FY (FLOWERING LOCUS Y) families had a large expansion in L. acutangula SG261 (flowering in the morning) compared to L. cylindrica (flowering in the afternoon), which may result in the early flowering time in L. acutangula SG261. This study provides valuable reference for the breeding of and pan-genome research into Luffa species. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

16 pages, 2176 KiB  
Article
A Pilot Detection and Associate Study of Gene Presence-Absence Variation in Holstein Cattle
by Clarissa Boschiero, Mahesh Neupane, Liu Yang, Steven G. Schroeder, Wenbin Tuo, Li Ma, Ransom L. Baldwin, Curtis P. Van Tassell and George E. Liu
Animals 2024, 14(13), 1921; https://doi.org/10.3390/ani14131921 - 28 Jun 2024
Viewed by 1797
Abstract
Presence-absence variations (PAVs) are important structural variations, wherein a genomic segment containing one or more genes is present in some individuals but absent in others. While PAVs have been extensively studied in plants, research in cattle remains limited. This study identified PAVs in [...] Read more.
Presence-absence variations (PAVs) are important structural variations, wherein a genomic segment containing one or more genes is present in some individuals but absent in others. While PAVs have been extensively studied in plants, research in cattle remains limited. This study identified PAVs in 173 Holstein bulls using whole-genome sequencing data and assessed their associations with 46 economically important traits. Out of 28,772 cattle genes (from the longest transcripts), a total of 26,979 (93.77%) core genes were identified (present in all individuals), while variable genes included 928 softcore (present in 95–99% of individuals), 494 shell (present in 5–94%), and 371 cloud genes (present in <5%). Cloud genes were enriched in functions associated with hormonal and antimicrobial activities, while shell genes were enriched in immune functions. PAV-based genome-wide association studies identified associations between gene PAVs and 16 traits including milk, fat, and protein yields, as well as traits related to health and reproduction. Associations were found on multiple chromosomes, illustrating important associations on cattle chromosomes 7 and 15, involving olfactory receptor and immune-related genes, respectively. By examining the PAVs at the population level, the results of this research provided crucial insights into the genetic structures underlying the complex traits of Holstein cattle. Full article
(This article belongs to the Collection Advances in Cattle Breeding, Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1595 KiB  
Article
The Landscape of Presence/Absence Variations during the Improvement of Rice
by Xia Zhou, Chenggen Qiang, Lei Chen, Dongjin Qing, Juan Huang, Jilong Li and Yinghua Pan
Genes 2024, 15(5), 645; https://doi.org/10.3390/genes15050645 - 19 May 2024
Cited by 1 | Viewed by 1962
Abstract
Rice is one of the most important staple crops in the world; therefore, the improvement of rice holds great significance for enhancing agricultural production and addressing food security challenges. Although there have been numerous studies on the role of single-nucleotide polymorphisms (SNPs) in [...] Read more.
Rice is one of the most important staple crops in the world; therefore, the improvement of rice holds great significance for enhancing agricultural production and addressing food security challenges. Although there have been numerous studies on the role of single-nucleotide polymorphisms (SNPs) in rice improvement with the development of next-generation sequencing technologies, research on the role of presence/absence variations (PAVs) in the improvement of rice is limited. In particular, there is a scarcity of studies exploring the traits and genes that may be affected by PAVs in rice. Here, we extracted PAVs utilizing resequencing data from 148 improved rice varieties distributed in Asia. We detected a total of 33,220 PAVs and found that the number of variations decreased gradually as the length of the PAVs increased. The number of PAVs was the highest on chromosome 1. Furthermore, we identified a 6 Mb hotspot region on chromosome 11 containing 1091 PAVs in which there were 29 genes related to defense responses. By conducting a genome-wide association study (GWAS) using PAV variation data and phenotypic data for five traits (flowering time, plant height, flag leaf length, flag leaf width, and panicle number) across all materials, we identified 186 significantly associated PAVs involving 20 cloned genes. A haplotype analysis and expression analysis of candidate genes revealed that important genes might be affected by PAVs, such as the flowering time gene OsSFL1 and the flag leaf width gene NAL1. Our work investigated the pattern in PAVs and explored important PAV key functional genes associated with agronomic traits. Consequently, these results provide potential and exploitable genetic resources for rice breeding. Full article
(This article belongs to the Special Issue Genetics and Genomics of Rice)
Show Figures

Figure 1

25 pages, 7695 KiB  
Article
Unveiling the Impact of Gene Presence/Absence Variation in Driving Inter-Individual Sequence Diversity within the CRP-I Gene Family in Mytilus spp.
by Nicolò Gualandi, Davide Fracarossi, Damiano Riommi, Marco Sollitto, Samuele Greco, Mario Mardirossian, Sabrina Pacor, Tiago Hori, Alberto Pallavicini and Marco Gerdol
Genes 2023, 14(4), 787; https://doi.org/10.3390/genes14040787 - 24 Mar 2023
Cited by 5 | Viewed by 2548
Abstract
Mussels (Mytilus spp.) tolerate infections much better than other species living in the same marine coastal environment thanks to a highly efficient innate immune system, which exploits a remarkable diversification of effector molecules involved in mucosal and humoral responses. Among these, antimicrobial [...] Read more.
Mussels (Mytilus spp.) tolerate infections much better than other species living in the same marine coastal environment thanks to a highly efficient innate immune system, which exploits a remarkable diversification of effector molecules involved in mucosal and humoral responses. Among these, antimicrobial peptides (AMPs) are subjected to massive gene presence/absence variation (PAV), endowing each individual with a potentially unique repertoire of defense molecules. The unavailability of a chromosome-scale assembly has so far prevented a comprehensive evaluation of the genomic arrangement of AMP-encoding loci, preventing an accurate ascertainment of the orthology/paralogy relationships among sequence variants. Here, we characterized the CRP-I gene cluster in the blue mussel Mytilus edulis, which includes about 50 paralogous genes and pseudogenes, mostly packed in a small genomic region within chromosome 5. We further reported the occurrence of widespread PAV within this family in the Mytilus species complex and provided evidence that CRP-I peptides likely adopt a knottin fold. We functionally characterized the synthetic peptide sCRP-I H1, assessing the presence of biological activities consistent with other knottins, revealing that mussel CRP-I peptides are unlikely to act as antimicrobial agents or protease inhibitors, even though they may be used as defense molecules against infections from eukaryotic parasites. Full article
(This article belongs to the Special Issue Aquaculture Genetics: Latest Advances and Prospects)
Show Figures

Figure 1

11 pages, 2235 KiB  
Article
Pan-Genomics Reveals a New Variation Pattern of Secreted Proteins in Pyricularia oryzae
by Jiandong Bao, Zhe Wang, Meilian Chen, Shijie Chen, Xiaomin Chen, Jiahui Xie, Wei Tang, Huakun Zheng and Zonghua Wang
J. Fungi 2022, 8(12), 1238; https://doi.org/10.3390/jof8121238 - 23 Nov 2022
Cited by 7 | Viewed by 2347
Abstract
(1) Background: Pyricularia oryzae, the causal agent of rice blast disease, is one of the major rice pathogens. The complex population structure of P. oryzae facilitates the rapid virulence variations, which make the blast disease a serious challenge for global food security. There [...] Read more.
(1) Background: Pyricularia oryzae, the causal agent of rice blast disease, is one of the major rice pathogens. The complex population structure of P. oryzae facilitates the rapid virulence variations, which make the blast disease a serious challenge for global food security. There is a large body of existing genomics research on P. oryzae, however the population structure at the pan-genome level is not clear, and the mechanism of genetic divergence and virulence variations of different sub-populations is also unknown. (2) Methods: Based on the genome data published in the NCBI, we constructed a pan-genome database of P. oryzae, which consisted of 156 strains (117 isolated from rice and 39 isolated from other hosts). (3) Results: The pan-genome contained a total of 24,100 genes (12,005 novel genes absent in the reference genome 70-15), including 16,911 (~70%) core genes (population frequency ≥95%) and 1378 (~5%) strain-specific genes (population frequency ≤5%). Gene presence-absence variation (PAV) based clustering analysis of the population structure of P. oryzae revealed four subgroups (three from rice and one from other hosts). Interestingly, the cloned avirulence genes and conventional secreted proteins (SPs, with signal peptides) were enriched in the high-frequency regions and significantly associated with transposable elements (TEs), while the unconventional SPs (without signal peptides) were enriched in the low-frequency regions and not associated significantly with TEs. This pan-genome will expand the breadth and depth of the rice blast fungus reference genome, and also serve as a new blueprint for scientists to further study the pathogenic mechanism and virulence variation of the rice blast fungus. Full article
(This article belongs to the Special Issue Genomics of Fungal Plant Pathogens)
Show Figures

Figure 1

18 pages, 1991 KiB  
Article
Identification of Heat-Tolerant Genes in Non-Reference Sequences in Rice by Integrating Pan-Genome, Transcriptomics, and QTLs
by Samuel Tareke Woldegiorgis, Ti Wu, Linghui Gao, Yunxia Huang, Yingjie Zheng, Fuxiang Qiu, Shichang Xu, Huan Tao, Andrew Harrison, Wei Liu and Huaqin He
Genes 2022, 13(8), 1353; https://doi.org/10.3390/genes13081353 - 28 Jul 2022
Cited by 7 | Viewed by 3092
Abstract
The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can [...] Read more.
The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15 heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859 genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which were specifically present in the highly heat-resistant rice cultivars and located in the genic regions or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212 downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome resource is an important step towards the effective and efficient genetic improvement of heat stress resistance in rice to help meet the rapidly growing needs for improved rice productivity under different environmental stresses. These findings provide further insight into the functional validation of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant QTLs in rice. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

14 pages, 1992 KiB  
Article
Pan-Genomes Provide Insights into the Genetic Basis of Auricularia heimuer Domestication
by Yuxiu Guo, Zhenhua Liu, Yongping Fu, Yu Li, Yueting Dai and Shijun Xiao
J. Fungi 2022, 8(6), 581; https://doi.org/10.3390/jof8060581 - 29 May 2022
Cited by 4 | Viewed by 3091
Abstract
In order to reveal the genetic variation signals of Auricularia heimuer that have occurred during their domestication and to find potential functional gene families, we constructed a monokaryotic pan-genome of A. heimuer representing four cultivated strains and four wild strains. The pan-genome contained [...] Read more.
In order to reveal the genetic variation signals of Auricularia heimuer that have occurred during their domestication and to find potential functional gene families, we constructed a monokaryotic pan-genome of A. heimuer representing four cultivated strains and four wild strains. The pan-genome contained 14,089 gene families, of which 67.56% were core gene families and 31.88% were dispensable gene families. We screened substrate utilization-related genes such as the chitinase gene ahchi1 of the glycoside hydrolase (GH) 18 family and a carbohydrate-binding module (CBM)-related gene from the dispensable families of cultivated populations. The genomic difference in the ahchi1 gene between the wild and cultivated genomes was caused by a 33 kb presence/absence variation (PAV). The detection rate of the ahchi1 gene was 93.75% in the cultivated population, significantly higher than that in the wild population (17.39%), indicating that it has been selected in cultivated strains. Principal component analysis (PCA) of the polymorphic markers in fragments near the ahchi1 gene was enriched in cultivated strains, and this was caused by multiple independent instances of artificial selection. We revealed for the first time the genetic basis of the ahchi1 gene in domestication, thereby providing a foundation for elucidating the potential function of the ahchi1 gene in the breeding of A. heimuer. Full article
(This article belongs to the Special Issue Genomics and Evolution of Macrofungi)
Show Figures

Figure 1

22 pages, 21133 KiB  
Article
Comparative Genomics and Gene Pool Analysis Reveal the Decrease of Genome Diversity and Gene Number in Rice Blast Fungi by Stable Adaption with Rice
by Qi Wu, Yi Wang, Li-Na Liu, Kai Shi and Cheng-Yun Li
J. Fungi 2022, 8(1), 5; https://doi.org/10.3390/jof8010005 - 22 Dec 2021
Cited by 5 | Viewed by 3874
Abstract
Magnaporthe oryzae caused huge losses in rice and wheat production worldwide. Comparing to long-term co-evolution history with rice, wheat-infecting isolates were new-emerging. To reveal the genetic differences between rice and wheat blast on global genomic scale, 109 whole-genome sequences of M. oryzae from [...] Read more.
Magnaporthe oryzae caused huge losses in rice and wheat production worldwide. Comparing to long-term co-evolution history with rice, wheat-infecting isolates were new-emerging. To reveal the genetic differences between rice and wheat blast on global genomic scale, 109 whole-genome sequences of M. oryzae from rice, wheat, and other hosts were reanalyzed in this study. We found that the rice lineage had gone through stronger selective sweep and fewer conserved genes than those of Triticum and Lolium lineages, which indicated that rice blast fungi adapted to rice by gene loss and rapid evolution of specific loci. Furthermore, 228 genes associated with host adaptation of M. oryzae were found by presence/absence variation (PAV) analyses. The functional annotation of these genes found that the fine turning of genes gain/loss involved with transport and transcription factor, thiol metabolism, and nucleotide metabolism respectively are major mechanisms for rice adaption. This result implies that genetic base of specific host plant may lead to gene gain/loss variation of pathogens, so as to enhance their adaptability to host. Further characterization of these specific loci and their roles in adaption and evaluation of the fungi may eventually lead to understanding of interaction mechanism and develop new strategies of the disease management. Full article
(This article belongs to the Special Issue Fungi: What Have We Learned from Omics?)
Show Figures

Figure 1

24 pages, 2306 KiB  
Article
Heterosis in Early Maize Ear Inflorescence Development: A Genome-Wide Transcription Analysis for Two Maize Inbred Lines and Their Hybrid
by Haiping Ding, Cheng Qin, Xirong Luo, Lujiang Li, Zhe Chen, Hongjun Liu, Jian Gao, Haijian Lin, Yaou Shen, Maojun Zhao, Thomas Lübberstedt, Zhiming Zhang and Guangtang Pan
Int. J. Mol. Sci. 2014, 15(8), 13892-13915; https://doi.org/10.3390/ijms150813892 - 11 Aug 2014
Cited by 29 | Viewed by 8645
Abstract
Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent [...] Read more.
Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17) and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs) genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex), five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity), and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization). Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an indication that in different tissues or developmental stages, different global expression patterns prevail, which might nevertheless be related to heterosis. Our results support the hypotheses that multiple molecular mechanisms (dominance and overdominance modes) contribute to heterosis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop