Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = preattentive processing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1502 KB  
Review
Visual Perception and Pre-Attentive Attributes in Oncological Data Visualisation
by Roberta Fusco, Vincenza Granata, Sergio Venanzio Setola, Davide Pupo, Teresa Petrosino, Ciro Paolo Lamanna, Mimma Castaldo, Maria Giovanna Riga, Michele A. Karaboue, Francesco Izzo and Antonella Petrillo
Bioengineering 2025, 12(7), 782; https://doi.org/10.3390/bioengineering12070782 - 18 Jul 2025
Viewed by 817
Abstract
In the era of precision medicine, effective data visualisation plays a pivotal role in supporting clinical decision-making by translating complex, multidimensional datasets into intuitive and actionable insights. This paper explores the foundational principles of visual perception, with a specific focus on pre-attentive attributes [...] Read more.
In the era of precision medicine, effective data visualisation plays a pivotal role in supporting clinical decision-making by translating complex, multidimensional datasets into intuitive and actionable insights. This paper explores the foundational principles of visual perception, with a specific focus on pre-attentive attributes such as colour, shape, size, orientation, and spatial position, which are processed automatically by the human visual system. Drawing from cognitive psychology and perceptual science, we demonstrate how these attributes can enhance the clarity and usability of medical visualisations, reducing cognitive load and improving interpretive speed in high-stakes clinical environments. Through detailed case studies and visual examples, particularly within the field of oncology, we highlight best practices and common pitfalls in the design of dashboards, nomograms, and interactive platforms. We further examine the integration of advanced tools—such as genomic heatmaps and temporal timelines—into multidisciplinary workflows to support personalised care. Our findings underscore that visually intelligent design is not merely an aesthetic concern but a critical factor in clinical safety, efficiency, and communication, advocating for user-centred and evidence-based approaches in the development of health data interfaces. Full article
(This article belongs to the Special Issue Mathematical Models for Medical Diagnosis and Testing)
Show Figures

Figure 1

27 pages, 4197 KB  
Article
Accentuation and Attention: From Perceptual Organization to Consciousness
by Baingio Pinna, Daniele Porcheddu and Jurģis Šķilters
Brain Sci. 2025, 15(3), 243; https://doi.org/10.3390/brainsci15030243 - 25 Feb 2025
Viewed by 1239
Abstract
Background: This study investigates the complex relationship between accentuation and attention in visual perception, extending classical Gestalt principles by introducing dissimilarity as a complementary mechanism to similarity in perceptual organization. Objectives and Methods: Through a series of phenomenological experiments, we demonstrate [...] Read more.
Background: This study investigates the complex relationship between accentuation and attention in visual perception, extending classical Gestalt principles by introducing dissimilarity as a complementary mechanism to similarity in perceptual organization. Objectives and Methods: Through a series of phenomenological experiments, we demonstrate how accentuation, driven by dissimilarity, plays a crucial role in shaping visual experience and guiding attention. Results: Our findings reveal that accentuation serves as a pre-attentive mechanism for highlighting salient features, influencing initial perceptual organization, and modulating the apparent shape and orientation of visual elements. We show that while accentuation operates rapidly and automatically, attention acts as a flexible, selective mechanism that can either reinforce or override accentuation-based percepts. This interplay suggests a two-stage process of visual perception, with implications for theories of consciousness and information processing in biological systems. This study also explores the evolutionary significance of accentuation in camouflage and sexual selection, providing insights into how perceptual mechanisms may have evolved to enhance adaptive fitness. Conclusions: Our results have broad implications for understanding visual cognition, design, and clinical applications related to attentional disorders. Full article
(This article belongs to the Special Issue From Visual Perception to Consciousness)
Show Figures

Figure 1

17 pages, 1968 KB  
Article
A Dual Role for the Dorsolateral Prefrontal Cortex (DLPFC) in Auditory Deviance Detection
by Manon E. Jaquerod, Ramisha S. Knight, Alessandra Lintas and Alessandro E. P. Villa
Brain Sci. 2024, 14(10), 994; https://doi.org/10.3390/brainsci14100994 - 29 Sep 2024
Cited by 2 | Viewed by 2544
Abstract
Background: In the oddball paradigm, the dorsolateral prefrontal cortex (DLPFC) is often associated with active cognitive responses, such as maintaining information in working memory or adapting response strategies. While some evidence points to the DLPFC’s role in passive auditory deviance perception, a detailed [...] Read more.
Background: In the oddball paradigm, the dorsolateral prefrontal cortex (DLPFC) is often associated with active cognitive responses, such as maintaining information in working memory or adapting response strategies. While some evidence points to the DLPFC’s role in passive auditory deviance perception, a detailed understanding of the spatiotemporal neurodynamics involved remains unclear. Methods: In this study, event-related optical signals (EROS) and event-related potentials (ERPs) were simultaneously recorded for the first time over the prefrontal cortex using a 64-channel electroencephalography (EEG) system, during passive auditory deviance perception in 12 right-handed young adults (7 women and 5 men). In this oddball paradigm, deviant stimuli (a 1500 Hz pure tone) elicited a negative shift in the N1 ERP component, related to mismatch negativity (MMN), and a significant positive deflection associated with the P300, compared to standard stimuli (a 1000 Hz tone). Results: We hypothesize that the DLPFC not only participates in active tasks but also plays a critical role in processing deviant stimuli in passive conditions, shifting from pre-attentive to attentive processing. We detected enhanced neural activity in the left middle frontal gyrus (MFG), at the same timing of the MMN component, followed by later activation at the timing of the P3a ERP component in the right MFG. Conclusions: Understanding these dynamics will provide deeper insights into the DLPFC’s role in evaluating the novelty or unexpectedness of the deviant stimulus, updating its cognitive value, and adjusting future predictions accordingly. However, the small number of subjects could limit the generalizability of the observations, in particular with respect to the effect of handedness, and additional studies with larger and more diverse samples are necessary to validate our conclusions. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

18 pages, 4144 KB  
Article
Auditory Sensory Gating: Effects of Noise
by Fan-Yin Cheng, Julia Campbell and Chang Liu
Biology 2024, 13(6), 443; https://doi.org/10.3390/biology13060443 - 18 Jun 2024
Cited by 1 | Viewed by 2923
Abstract
Cortical auditory evoked potentials (CAEPs) indicate that noise degrades auditory neural encoding, causing decreased peak amplitude and increased peak latency. Different types of noise affect CAEP responses, with greater informational masking causing additional degradation. In noisy conditions, attention can improve target signals’ neural [...] Read more.
Cortical auditory evoked potentials (CAEPs) indicate that noise degrades auditory neural encoding, causing decreased peak amplitude and increased peak latency. Different types of noise affect CAEP responses, with greater informational masking causing additional degradation. In noisy conditions, attention can improve target signals’ neural encoding, reflected by an increased CAEP amplitude, which may be facilitated through various inhibitory mechanisms at both pre-attentive and attentive levels. While previous research has mainly focused on inhibition effects during attentive auditory processing in noise, the impact of noise on the neural response during the pre-attentive phase remains unclear. Therefore, this preliminary study aimed to assess the auditory gating response, reflective of the sensory inhibitory stage, to repeated vowel pairs presented in background noise. CAEPs were recorded via high-density EEG in fifteen normal-hearing adults in quiet and noise conditions with low and high informational masking. The difference between the average CAEP peak amplitude evoked by each vowel in the pair was compared across conditions. Scalp maps were generated to observe general cortical inhibitory networks in each condition. Significant gating occurred in quiet, while noise conditions resulted in a significantly decreased gating response. The gating function was significantly degraded in noise with less informational masking content, coinciding with a reduced activation of inhibitory gating networks. These findings illustrate the adverse effect of noise on pre-attentive inhibition related to speech perception. Full article
(This article belongs to the Special Issue Neural Correlates of Perception in Noise in the Auditory System)
Show Figures

Figure 1

15 pages, 6373 KB  
Article
Animating Cartographic Meaning: Unveiling the Impact of Pictorial Symbol Motion Speed in Preattentive Processing
by Paweł Cybulski
ISPRS Int. J. Geo-Inf. 2024, 13(4), 118; https://doi.org/10.3390/ijgi13040118 - 3 Apr 2024
Cited by 3 | Viewed by 2362
Abstract
The primary objective of this study is to assess how the motion of dynamic point symbols impacts preattentive processing on a map. Specifically, it involves identifying the motion velocity parameters for cartographic animated pictorial symbols that contribute to the preattentive perception of the [...] Read more.
The primary objective of this study is to assess how the motion of dynamic point symbols impacts preattentive processing on a map. Specifically, it involves identifying the motion velocity parameters for cartographic animated pictorial symbols that contribute to the preattentive perception of the target symbols. We created five pictorial symbols, each accompanied by a unique animation tailored to convey the meaning associated with each symbol. The animation dynamics of symbols on the administrative map were distributed across arithmetic, logarithmic, and exponential scales. Eye-tracking technology was utilized to explain the user’s visual attention. The key findings reveal that, although movement does not uniformly hold the same designation in cartographic communication, it could guide user attention to identify the value peaks in quantitative map visualization. Motion velocity enhances the salience of animated symbols, making them stand out, not only against static elements but also against other animated distractors. Additionally, motion distributions between symbol classes based on exponential or arithmetic scales were identified as the most successful. Nevertheless, certain types of motion, such as rotational, do not perform well with pictorial symbols, even on the most effective motion distribution scale. Full article
Show Figures

Figure 1

13 pages, 2797 KB  
Article
Probing the Bottleneck of Awareness Formed by Foveal Crowding: A Neurophysiological Study
by Ziv Siman-Tov, Maria Lev and Uri Polat
Brain Sci. 2024, 14(2), 169; https://doi.org/10.3390/brainsci14020169 - 7 Feb 2024
Cited by 2 | Viewed by 2350
Abstract
Crowding occurs when an easily identified isolated stimulus is surrounded by stimuli with similar properties, making it very difficult to identify. Crowding is suggested as a mechanism that creates a bottleneck in object recognition and awareness. Recently, we showed that brief presentation times [...] Read more.
Crowding occurs when an easily identified isolated stimulus is surrounded by stimuli with similar properties, making it very difficult to identify. Crowding is suggested as a mechanism that creates a bottleneck in object recognition and awareness. Recently, we showed that brief presentation times at the fovea resulted in a significant crowding effect on target identification, impaired the target’s color awareness, and resulted in a slower reaction time. However, when tagging the target with a red letter, the crowding effect is abolished. Crowding is widely considered a grouping; hence, it is pre-attentive. An event-related potential (ERP) study that investigated the spatial–temporal properties of crowding suggested the involvement of higher-level visual processing. Here, we investigated whether ERP’s components may be affected by crowding and tagging, and whether the temporal advantage of ERP can be utilized to gain further information about the crowding mechanism. The participants reported target identification using our standard foveal crowing paradigm. It is assumed that crowding occurs due to a suppressive effect; thus, it can be probed by changes in perceptual (N1, ~160 ms) and attentive (P3 ~300–400 ms) components. We found a suppression effect (less negative ERP magnitude) in N1 under foveal crowding, which was recovered under tagging conditions. ERP’s amplitude components (N1 and P3) and the behavioral proportion correct are highly correlated. These findings suggest that crowding is an early grouping mechanism that may be combined with later processing involving the segmentation mechanism. Full article
(This article belongs to the Special Issue From Visual Perception to Consciousness)
Show Figures

Figure 1

14 pages, 4142 KB  
Article
Motion Velocity as a Preattentive Feature in Cartographic Symbolization
by Paweł Cybulski and Vassilios Krassanakis
J. Eye Mov. Res. 2023, 16(4), 1-14; https://doi.org/10.16910/jemr.16.4.1 - 14 Sep 2023
Cited by 9 | Viewed by 1210
Abstract
The presented study aims to examine the process of preattentive processing of dynamic point symbols used in cartographic symbology. More specifically, we explore different motion types of geometric symbols on a map together with various motion velocity distribution scales. The main hypothesis is [...] Read more.
The presented study aims to examine the process of preattentive processing of dynamic point symbols used in cartographic symbology. More specifically, we explore different motion types of geometric symbols on a map together with various motion velocity distribution scales. The main hypothesis is that, in specific cases, motion velocity of dynamic point symbols is the feature that could be perceived preattentively on a map. In a controlled laboratory experiment, with 103 participants and eye tracking methods, we used administrative border maps with animated symbols. Participants’ task was to find and precisely identify the fastest changing symbol. It turned out that not every type of motion could be perceived preattentively even though the motion distribution scale did not change. The same applied to symbols’ shape. Eye movement analysis revealed that successful detection was closely related to the fixation on the target after initial preattentive vision. This confirms a significant role of the motion velocity distribution and the usage of symbols’ shape in cartographic design of animated maps. Full article
Show Figures

Figure 1

31 pages, 5754 KB  
Review
Symmetry Perception and Psychedelic Experience
by Alexis D. J. Makin, Marco Roccato, Elena Karakashevska, John Tyson-Carr and Marco Bertamini
Symmetry 2023, 15(7), 1340; https://doi.org/10.3390/sym15071340 - 30 Jun 2023
Cited by 13 | Viewed by 6792
Abstract
This review of symmetry perception has six parts. Psychophysical studies have investigated symmetry perception for over 100 years (part 1). Neuroscientific studies on symmetry perception have accumulated in the last 20 years. Functional MRI and EEG experiments have conclusively shown that regular visual [...] Read more.
This review of symmetry perception has six parts. Psychophysical studies have investigated symmetry perception for over 100 years (part 1). Neuroscientific studies on symmetry perception have accumulated in the last 20 years. Functional MRI and EEG experiments have conclusively shown that regular visual arrangements, such as reflectional symmetry, Glass patterns, and the 17 wallpaper groups all activate the extrastriate visual cortex. This activation generates an event-related potential (ERP) called sustained posterior negativity (SPN). SPN amplitude scales with the degree of regularity in the display, and the SPN is generated whether participants attend to symmetry or not (part 2). It is likely that some forms of symmetry are detected automatically, unconsciously, and pre-attentively (part 3). It might be that the brain is hardwired to detect reflectional symmetry (part 4), and this could contribute to its aesthetic appeal (part 5). Visual symmetry and fractal geometry are prominent in hallucinations induced by the psychedelic drug N,N-dimethyltryptamine (DMT), and visual flicker (part 6). Integrating what we know about symmetry processing with features of induced hallucinations is a new frontier in neuroscience. We propose that the extrastriate cortex can generate aesthetically fascinating symmetrical representations spontaneously, in the absence of external symmetrical stimuli. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry: Feature Review Papers)
Show Figures

Figure 1

10 pages, 741 KB  
Article
Pre-Attentional Effects on Global Precedence Processing in Children with Autism Spectrum Disorder and Those with Typical Development on a Tablet-Based Modified Navon’s Paradigm Task
by Yumi Ju, Soyoung Kang, Jin-Wook Chung and Jeh-Kwang Ryu
Healthcare 2023, 11(3), 372; https://doi.org/10.3390/healthcare11030372 - 28 Jan 2023
Cited by 1 | Viewed by 2599
Abstract
This study aimed to characterize the pre-attentional effects on global precedence processing in children with autism spectrum disorder (ASD) and those with typical development (TD). A sample of 17 participants, comprising eight children with ASD and nine TD children, were recruited for the [...] Read more.
This study aimed to characterize the pre-attentional effects on global precedence processing in children with autism spectrum disorder (ASD) and those with typical development (TD). A sample of 17 participants, comprising eight children with ASD and nine TD children, were recruited for the study. A tablet-based assessment utilizing a global and local visual processing paradigm task was developed to investigate the participant’s abilities. The task consisted of verbal instructions to locate and touch either a global or local figure, presented in five conditions: neutral, congruent, and incongruent. The percentage of correct answers and reaction time (RT) for each task were measured and analyzed statistically. Results revealed that children with ASD exhibited statistically significant differences in both the percentage of correct scores and RT among various conditions, while TD children displayed differences in RT but not in the percentage of correct answers. These findings suggest that conflicting processes affect both behavioral and cognitive processes in children with ASD, and that cognitive effort is still involved for children with TD, but does not affect behavioral processes. In children with ASD, the RT was the shortest in the congruent (report local figure) condition; in children with TD, the RT was the shortest in the congruent (report global figure) condition. This implies that children with TD exhibit a pre-attentive effect on global precedence processing, while children with ASD do not. These visual-processing-function characteristics may aid in screening for visual perception problems in children with ASD. Full article
(This article belongs to the Special Issue Digital Therapeutics in Healthcare)
Show Figures

Figure 1

14 pages, 2277 KB  
Article
Distinct Neural Resource Involvements but Similar Hemispheric Lateralization Patterns in Pre-Attentive Processing of Speaker’s Identity and Linguistic Information
by Shuqi Yin, Lang Xie, Yunxiao Ma, Keke Yu and Ruiming Wang
Brain Sci. 2023, 13(2), 192; https://doi.org/10.3390/brainsci13020192 - 23 Jan 2023
Cited by 1 | Viewed by 3919
Abstract
The speaker’s identity (who the speaker is) and linguistic information (what the speaker is saying) are essential to daily communication. However, it is unclear whether and how listeners process the two types of information differently in speech perception. The present study adopted a [...] Read more.
The speaker’s identity (who the speaker is) and linguistic information (what the speaker is saying) are essential to daily communication. However, it is unclear whether and how listeners process the two types of information differently in speech perception. The present study adopted a passive oddball paradigm to compare the identity and linguistic information processing concerning neural resource involvements and hemispheric lateralization patterns. We used two female native Mandarin speakers’ real and pseudo-Mandarin words to differentiate the identity from linguistic (phonological and lexical) information. The results showed that, in real words, the phonological-lexical variation elicited larger MMN amplitudes than the identity variation. In contrast, there were no significant MMN amplitude differences between the identity and phonological variation in pseudo words. Regardless of real or pseudo words, the identity and linguistic variation did not elicit MMN amplitudes differences between the left and right hemispheres. Taken together, findings from the present study indicated that the identity information recruited similar neural resources to the phonological information but different neural resources from the lexical information. However, the identity and linguistic information processing did not show a particular hemispheric lateralization pattern at an early pre-attentive speech perception stage. The findings revealed similarities and differences between linguistic and non-linguistic information processing, contributing to a better understanding of speech perception and spoken word recognition. Full article
(This article belongs to the Section Neurolinguistics)
Show Figures

Figure 1

25 pages, 2140 KB  
Article
Event-Related Potential Study of Recovery of Consciousness during Forced Awakening from Slow-Wave Sleep and Rapid Eye Movement Sleep
by Krystsina Liaukovich, Sergei Sazhin, Pavel Bobrov and Yulia Ukraintseva
Int. J. Mol. Sci. 2022, 23(19), 11785; https://doi.org/10.3390/ijms231911785 - 4 Oct 2022
Cited by 4 | Viewed by 3027
Abstract
This work aimed to study the recovery of consciousness during forced awakening from slow-wave sleep (SWS) and rapid eye movement sleep (REM) in healthy volunteers. To track the changes in the degree of awareness of the stimuli during the transition to wakefulness, event-related [...] Read more.
This work aimed to study the recovery of consciousness during forced awakening from slow-wave sleep (SWS) and rapid eye movement sleep (REM) in healthy volunteers. To track the changes in the degree of awareness of the stimuli during the transition to wakefulness, event-related potentials (ERPs) and motor responses (MR) in the auditory local-global paradigm were analyzed. The results show that during awakening from both SWS and REM, first, alpha-activity restores in the EEG, and only 20 and 25 s (for REM and SWS awakenings, respectively) after alpha onset MR to target stimuli recovers. During REM awakening, alpha-rhythm, MR, and conscious awareness of stimuli recover faster than during SWS awakening. Moreover, pre-attentive processing of local irregularities emerges earlier, even before alpha-rhythm onset, while during SWS awakening, the local effect we registered only after alpha restoration. The P300-like response both on global and local irregularities was found only when accurate MR was restored. Thus, the appearance in EEG predominating alpha-activity is insufficient either for conscious awareness of external stimuli or for generating MR to them. This work may help to understand the pathophysiology of sleep disorders well as conditions characterized by the dissociation between behavior and various aspects of consciousness. Full article
(This article belongs to the Special Issue Brain Mechanisms of Sleep Related Disorders 2.0)
Show Figures

Figure 1

15 pages, 722 KB  
Article
A New Meta-Heuristics Data Clustering Algorithm Based on Tabu Search and Adaptive Search Memory
by Youseef Alotaibi
Symmetry 2022, 14(3), 623; https://doi.org/10.3390/sym14030623 - 20 Mar 2022
Cited by 70 | Viewed by 4661
Abstract
Clustering is a popular data analysis and data mining problem. Symmetry can be considered as a pre-attentive feature, which can improve shapes and objects, as well as reconstruction and recognition. The symmetry-based clustering methods search for clusters that are symmetric with respect to [...] Read more.
Clustering is a popular data analysis and data mining problem. Symmetry can be considered as a pre-attentive feature, which can improve shapes and objects, as well as reconstruction and recognition. The symmetry-based clustering methods search for clusters that are symmetric with respect to their centers. Furthermore, the K-means (K-M) algorithm can be considered as one of the most common clustering methods. It can be operated more quickly in most conditions, as it is easily implemented. However, it is sensitively initialized and it can be easily trapped in local targets. The Tabu Search (TS) algorithm is a stochastic global optimization technique, while Adaptive Search Memory (ASM) is an important component of TS. ASM is a combination of different memory structures that save statistics about search space and gives TS needed heuristic data to explore search space economically. Thus, a new meta-heuristics algorithm called (MHTSASM) is proposed in this paper for data clustering, which is based on TS and K-M. It uses TS to make economic exploration for data with the help of ASM. It starts with a random initial solution. It obtains neighbors of the current solution called trial solutions and updates memory elements for each iteration. The intensification and diversification strategies are used to enhance the search process. The proposed MHTSASM algorithm performance is compared with multiple clustering techniques based on both optimization and meta-heuristics. The experimental results indicate the superiority of the MHTSASM algorithm compared with other multiple clustering algorithms. Full article
(This article belongs to the Topic Applied Metaheuristic Computing)
Show Figures

Figure 1

30 pages, 1957 KB  
Review
HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits
by Kristen A. McLaurin, Michael Harris, Victor Madormo, Steven B. Harrod, Charles F. Mactutus and Rosemarie M. Booze
Cells 2021, 10(8), 2158; https://doi.org/10.3390/cells10082158 - 21 Aug 2021
Cited by 25 | Viewed by 6099
Abstract
Individuals living with human immunodeficiency virus type 1 (HIV-1) are often plagued by debilitating neurocognitive impairments and affective alterations;the pathophysiology underlying these deficits likely includes dopaminergic system dysfunction. The present review utilized four interrelated aims to critically examine the evidence for dopaminergic alterations [...] Read more.
Individuals living with human immunodeficiency virus type 1 (HIV-1) are often plagued by debilitating neurocognitive impairments and affective alterations;the pathophysiology underlying these deficits likely includes dopaminergic system dysfunction. The present review utilized four interrelated aims to critically examine the evidence for dopaminergic alterations following HIV-1 viral protein exposure. First, basal dopamine (DA) values are dependent upon both brain region andexperimental approach (i.e., high-performance liquid chromatography, microdialysis or fast-scan cyclic voltammetry). Second, neurochemical measurements overwhelmingly support decreased DA concentrations following chronic HIV-1 viral protein exposure. Neurocognitive impairments, including alterations in pre-attentive processes and attention, as well as apathetic behaviors, provide an additional line of evidence for dopaminergic deficits in HIV-1. Third, to date, there is no compelling evidence that combination antiretroviral therapy (cART), the primary treatment regimen for HIV-1 seropositive individuals, has any direct pharmacological action on the dopaminergic system. Fourth, the infection of microglia by HIV-1 viral proteins may mechanistically underlie the dopamine deficit observed following chronic HIV-1 viral protein exposure. An inclusive and critical evaluation of the literature, therefore, supports the fundamental conclusion that long-term HIV-1 viral protein exposure leads to a decreased dopaminergic state, which continues to persist despite the advent of cART. Thus, effective treatment of HIV-1-associated apathy/depression and neurocognitive impairments must focus on strategies for rectifying decreases in dopamine function. Full article
(This article belongs to the Special Issue The Past, Present and Future of NeuroHIV: A Perspective to A Cure)
Show Figures

Figure 1

29 pages, 49128 KB  
Article
Visual Attention Software: A New Tool for Understanding the “Subliminal” Experience of the Built Environment
by Alexandros A. Lavdas, Nikos A. Salingaros and Ann Sussman
Appl. Sci. 2021, 11(13), 6197; https://doi.org/10.3390/app11136197 - 4 Jul 2021
Cited by 31 | Viewed by 10718
Abstract
Eye-tracking technology is a biometric tool that has found many commercial and research applications. The recent advent of affordable wearable sensors has considerably expanded the range of these possibilities to fields such as computer gaming, education, entertainment, health, neuromarketing, psychology, etc. The Visual [...] Read more.
Eye-tracking technology is a biometric tool that has found many commercial and research applications. The recent advent of affordable wearable sensors has considerably expanded the range of these possibilities to fields such as computer gaming, education, entertainment, health, neuromarketing, psychology, etc. The Visual Attention Software by 3M (3M-VAS) is an artificial intelligence application that was formulated using experimental data from eye-tracking. It can be used to predict viewer reactions to images, generating fixation point probability maps and fixation point sequence estimations, thus revealing pre-attentive processing of visual stimuli with a very high degree of accuracy. We have used 3M-VAS software in an innovative implementation to analyze images of different buildings, either in their original state or photographically manipulated, as well as various geometric patterns. The software not only reveals non-obvious fixation points, but also overall relative design coherence, a key element of Christopher Alexander’s theory of geometrical order. A more evenly distributed field of attention seen in some structures contrasts with other buildings being ignored, those showing instead unconnected points of splintered attention. Our findings are non-intuitive and surprising. We link these results to both Alexander’s theory and Neuroscience, identify potential pitfalls in the software’s use, and also suggest ways to avoid them. Full article
Show Figures

Figure 1

21 pages, 56143 KB  
Article
Fractal Dimension Calculation and Visual Attention Simulation: Assessing the Visual Character of an Architectural Façade
by Ju Hyun Lee and Michael J. Ostwald
Buildings 2021, 11(4), 163; https://doi.org/10.3390/buildings11040163 - 15 Apr 2021
Cited by 28 | Viewed by 6392
Abstract
The design of a building façade has a significant impact on the way people respond to it physiologically and behaviourally. Few methods are available to assist an architect to understand such impacts during the design process. Thus, this paper examines the viability of [...] Read more.
The design of a building façade has a significant impact on the way people respond to it physiologically and behaviourally. Few methods are available to assist an architect to understand such impacts during the design process. Thus, this paper examines the viability of using two computational methods to examine potential visual stimulus-sensation relationships in facade design. The first method, fractal analysis, is used to holistically measure the visual stimuli of a design. This paper describes both the box counting (density) and differential box counting (intensity) approaches to determining fractal dimension (D) in architecture. The second method, visual attention simulation, is used to explore pre-attentive processing and sensation in vision. Four measures—D-density (Dd), D-intensity (Di), heat map and gaze sequence—are used to provide quantitative and qualitative indicators of the ways people read different design options. Using two façade designs as examples, the results of this application reveal that the D values of a façade image have a relationship with the pre-attentive processing shown in heat map and gaze sequence simulations. The findings are framed as a methodological contribution to the field, but also to the disciplinary knowledge gap about the stimulus-sensation relationship and visual reasoning in design. Full article
(This article belongs to the Special Issue Computer Aided Architectural Design)
Show Figures

Figure 1

Back to TopTop