Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = pre-impregnated wipes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7548 KiB  
Article
Flexible Phase Change Materials with High Energy Storage Density Based on Porous Carbon Fibers
by Xiangqin Peng, Lei Chen, Bohong Li, Zhe Tang, Yifan Jia, Zhenyu Jason Zhang, Qianqian Yu and LinGe Wang
Polymers 2024, 16(24), 3547; https://doi.org/10.3390/polym16243547 - 19 Dec 2024
Viewed by 1043
Abstract
Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of [...] Read more.
Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of PCFs. Herein, we have successfully fabricated a suite of flexible PCFs with high energy storage density, which use hollow carbon fibers (HCFs) encapsulated phase change materials (PCMs) to provide efficient heat storage and release, thereby enhancing energy efficiency and underpinning a broad range of energy applications. The flexible HCF/LA PCFs with high energy density were made by impregnating a small molecule LA solution, whereas the precursor of the PAN/ZIF-67 composite fibers was created by electrospinning. These PCFs have a high loading capacity for lauric acid (LA), demonstrating a 92% load percentage and a 153 J g−1 phase change enthalpy value. The effects of doping quantity (ZIF-67), fiber orientation, pre-oxidation treatment, and particle size on the morphological and structural characteristics of HCFs, as well as the impact of HCFs’ pore structure on PCM encapsulation, were investigated. It was found that the oriented fiber structure serves to reduce the likelihood of fracture and breakage of precursor fibers after carbonization, whilst the gradient pre-oxidation can maintain the original fiber morphology of the fibers after carbonization. These findings establish a solid theoretical foundation for the design and production of high-performance flexible porous carbon nanofiber wiping phase change composites. Full article
(This article belongs to the Special Issue Electrospinning of Polymer Systems)
Show Figures

Graphical abstract

23 pages, 8904 KiB  
Article
Chemical, Thermo-Mechanical and Antimicrobial Properties of DBD Plasma Treated Disinfectant-Impregnated Wipes during Storage
by Xinyu Song, Uros Cvelbar, Petra Strazar, Lutz Vossebein and Andrea Zille
Polymers 2019, 11(11), 1769; https://doi.org/10.3390/polym11111769 - 27 Oct 2019
Cited by 14 | Viewed by 4575
Abstract
Disinfectant-impregnated wipes are broadly used in hospitals, as an important approach for infection prevention and control. But their ageing performance has rarely been studied. Untreated and Dielectric Barrier Discharge (DBD) plasma pre-treated wiping materials made of nonwoven 100% polyester (W1), nonwoven 55% cellulose/45% [...] Read more.
Disinfectant-impregnated wipes are broadly used in hospitals, as an important approach for infection prevention and control. But their ageing performance has rarely been studied. Untreated and Dielectric Barrier Discharge (DBD) plasma pre-treated wiping materials made of nonwoven 100% polyester (W1), nonwoven 55% cellulose/45% polyester (W2) and woven cotton (W3) were impregnated with a quaternary ammonium compound solution (ADBAC) for 30 min, 3, 7, 15, and 30 days of storage time and characterized in term of chemical, thermo-mechanical and antimicrobial efficacy. X-ray photoelectron spectroscopy analysis on the plasma-treated polyester wipes demonstrates the incorporation of reactive oxygen species on the fiber surface. Laser scanning microscopy demonstrates the plasma etching effect in smoothing the surface of the cotton wipe reducing the adsorption of ADBAC. The result showed no significant changes in breaking force and elongation during storage for W1 and W2. However, plasma treatment affects W3 in weft direction reducing the force at break in water and ADBAC treated wipes. Dynamic mechanical analysis results show that ADBAC and plasma treatment have a significant influence in W1 and W3 viscoelastic properties improving the elastic response limiting the polymeric chains mobility and the non-elastic response due to the etching effect, respectively. Overall, the plasma pre-treatment of ADBAC-impregnated wipes is able to enhance the antimicrobial performance and the storage time of polyester-containing wipes. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

9 pages, 811 KiB  
Article
Improving Cleaning and Disinfection of High-Touch Surfaces in Intensive Care during Carbapenem-Resistant Acinetobacter baumannii Endemo-Epidemic Situations
by Beatrice Casini, Anna Righi, Nunzio De Feo, Michele Totaro, Serena Giorgi, Lavinia Zezza, Paola Valentini, Enrico Tagliaferri, Anna Laura Costa, Simona Barnini, Angelo Baggiani, Pietro Luigi Lopalco, Paolo Malacarne and Gaetano Pierpaolo Privitera
Int. J. Environ. Res. Public Health 2018, 15(10), 2305; https://doi.org/10.3390/ijerph15102305 - 19 Oct 2018
Cited by 20 | Viewed by 6660
Abstract
Aims: High-touch surfaces cleaning and disinfection require the adoption of effective and proper executed protocols, especially during carbapenem-resistant Acinetobacter baumannii (CRAB) endemo-epidemic situations. We evaluated the effectiveness and residual disinfectant activity of disposable pre-impregnated wipes (Modified Operative Protocol, MOP) in reducing environmental bioburden [...] Read more.
Aims: High-touch surfaces cleaning and disinfection require the adoption of effective and proper executed protocols, especially during carbapenem-resistant Acinetobacter baumannii (CRAB) endemo-epidemic situations. We evaluated the effectiveness and residual disinfectant activity of disposable pre-impregnated wipes (Modified Operative Protocol, MOP) in reducing environmental bioburden versus a two-step Standard Operative Protocol (SOP) in a 12-bed Intensive Care Unit. Methods: Five high-touch surfaces were cleaned and disinfected either according to the SOP (alcohol-based cleaning and chlorine-based disinfection) or using quaternary ammonium compounds-based disposable wipes (MOP). Sampling was performed before each procedure and at 0.5, 2.5, 4.5 and 6.5 h after (560 sites). Total viable count (TVC) was evaluated according to Italian hygiene standard (<50 CFU/24 cm2). Clinical and environmental CRAB strains isolated were genotyped. Results: On non-electromedical surfaces the difference between TVC before procedure and at each of the following times was significant only for the MOP (p < 0.05, Wilcoxon test). Using the MOP, only 7.4% (10/135) of sites showed TVC >50 CFU/24 cm2 (hygiene failures) versus 18.9% (25/132) after SOP (p < 0.05, Fisher’s Exact test). On infusion pumps a higher number of hygiene failures was observed after the SOP (7/44, 15.9%) compared with the MOP (4/45, 8.9%). Genotyping highlighted a common source of infection. Conclusion: On high-touch surfaces, the use of disposable wipes by in-house auxiliary nurses may represent a more effective alternative to standard cleaning and disinfection procedure performed by outsourced cleaning services, showing effectiveness in reducing microbial contamination and residual disinfection activity up to 6.5 h. Full article
Show Figures

Figure 1

Back to TopTop