Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = power-driven-damper control strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6846 KB  
Article
Phase–Frequency Cooperative Optimization of HMDV Dynamic Inertial Suspension System with Generalized Ground-Hook Control
by Yihong Ping, Xiaofeng Yang, Yi Yang, Yujie Shen, Shaocong Zeng, Shihang Dai and Jingchen Hong
Machines 2025, 13(7), 556; https://doi.org/10.3390/machines13070556 - 26 Jun 2025
Cited by 1 | Viewed by 383
Abstract
Hub motor-driven vehicles (HMDVs) suffer from poor handling and stability due to an increased unsprung mass and unbalanced radial electromagnetic forces. Although traditional ground-hook control reduces the dynamic tire load, it severely worsens the body acceleration. This paper presents a generalized ground-hook control [...] Read more.
Hub motor-driven vehicles (HMDVs) suffer from poor handling and stability due to an increased unsprung mass and unbalanced radial electromagnetic forces. Although traditional ground-hook control reduces the dynamic tire load, it severely worsens the body acceleration. This paper presents a generalized ground-hook control strategy based on impedance transfer functions to address the parameter redundancy in structural methods. A quarter-vehicle model with a switched reluctance motor wheel hub drive was used to study different orders of generalized ground-hook impedance transfer function control strategies for dynamic inertial suspension. An enhanced fish swarm parameter optimization method identified the optimal solutions for different structural orders. Analyses showed that the third-order control strategy optimized the body acceleration by 2%, reduced the dynamic tire load by 8%, and decreased the suspension working space by 22%. This strategy also substantially lowered the power spectral density for the body acceleration and dynamic tire load in the low-frequency band of 1.2 Hz. Additionally, it balanced computational complexity and performance, having slightly higher complexity than lower-order methods but much less than higher-order structures, meeting real-time constraints. To address time-domain deviations from generalized ground-hook control in semi-active systems, a dynamic compensation strategy was proposed: eight topological structures were created by modifying the spring–damper structure. A deviation correction mechanism was devised based on the frequency-domain coupling characteristics between the wheel speed and suspension relative velocity. For ride comfort and road-friendliness, a dual-frequency control criterion was introduced: in the low-frequency range, energy transfer suppression and phase synchronization locking were realized by constraining the ground-hook damping coefficient or inertance coefficient, while in the high-frequency range, the inertia-dominant characteristic was enhanced, and dynamic phase adaptation was permitted to mitigate road excitations. The results show that only the T0 and T5 structures met dynamic constraints across the frequency spectrum. Time-domain simulations showed that the deviation between the T5 structure and the third-order generalized ground-hook impedance model was relatively small, outperforming traditional and T0 structures, validating the model’s superior adaptability in high-order semi-active suspension. Full article
(This article belongs to the Special Issue New Journeys in Vehicle System Dynamics and Control)
Show Figures

Figure 1

14 pages, 2741 KB  
Article
Topology Optimization Design and Dynamic Performance Analysis of Inerter-Spring-Damper Suspension Based on Power-Driven-Damper Control Strategy
by Jinsen Wang, Yujie Shen, Fu Du, Ming Li and Xiaofeng Yang
World Electr. Veh. J. 2024, 15(1), 8; https://doi.org/10.3390/wevj15010008 - 26 Dec 2023
Cited by 5 | Viewed by 2739
Abstract
In this paper, the problem of broadband vibration suppression of power-driven-damper vehicle “inerter-spring-damper” (ISD) suspension is studied. The suspension can effectively inherit the low-frequency vibration suppression effect of ISD suspension and the high-frequency vibration suppression effect of the power-driven-damper control strategy. Based on [...] Read more.
In this paper, the problem of broadband vibration suppression of power-driven-damper vehicle “inerter-spring-damper” (ISD) suspension is studied. The suspension can effectively inherit the low-frequency vibration suppression effect of ISD suspension and the high-frequency vibration suppression effect of the power-driven-damper control strategy. Based on the structural method, this paper proposes four suspensions with different structures. The optimal structure and parameters are obtained by using pigeon-inspired optimization. The results show that, based on the optimal structure, the Root-Mean-Square (RMS) of body acceleration and the RMS of suspension working space are reduced by 23.1% and 6.6%, respectively, compared to the traditional passive suspension. The influence of the damping coefficient on the dynamic performance of the power-driven-damper vehicle ISD suspension is further studied. The vibration suppression characteristics of the proposed suspension are simulated and analyzed in both the time domain and frequency domain. It is shown that the power-driven-damper vehicle ISD suspension can effectively reduce vibrations across a wide frequency range and significantly improve body acceleration and suspension working space, thereby enhancing the ride comfort. Full article
(This article belongs to the Special Issue Advanced Vehicle System Dynamics and Control)
Show Figures

Figure 1

Back to TopTop