Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = porous asphalt pavement (PAP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2062 KiB  
Article
Multi-Level Control and Utilization of Stormwater Runoff
by Yuhang Zuo, Hui Luo, Mingzhi Song, Baojie He, Bingxin Cai, Wenhao Zhang and Mingyu Yang
Appl. Sci. 2022, 12(17), 8784; https://doi.org/10.3390/app12178784 - 31 Aug 2022
Cited by 3 | Viewed by 2027
Abstract
This study proposes the technology of “runoff storage and seepage utilization” for achieving purification of road rainfall–runoff and presents a multi-level series purification system (PBT-GR) comprising porous asphalt pavement (PAP), a bioretention system (BS), a storage tank (T) and a hydroponic green roof [...] Read more.
This study proposes the technology of “runoff storage and seepage utilization” for achieving purification of road rainfall–runoff and presents a multi-level series purification system (PBT-GR) comprising porous asphalt pavement (PAP), a bioretention system (BS), a storage tank (T) and a hydroponic green roof (GR). The operation parameters of each component unit were optimized and the contribution of each unit to pollution was analyzed. The results showed that under typical simulated rainfall, the suspended solids (SS), total nitrogen (TN), total phosphorus (TP), Pb, Zn and Cu removal rates by filtration and interception of porous pavement were 62.26 ± 3.19%, 16.29 ± 1.74%, 29.27 ± 1.37%, 37.61 ± 2.58%, 35.57 ± 4.64% and 31.17 ± 3.27%, respectively. The average concentrations of SS, TN, TP, Pb, Zn and Cu in the effluent of the PBT-GR system were 14.70 ± 2.21 mg/L, 1.52 ± 0.24 mg/L, 0.14 ± 0.04 mg/L, 0.09 ± 0.04 mg/L, 0.11 ± 0.03 mg/L and 0.04 ± 0.01mg/L, respectively, which met the water quality standards recommended in the Chinese guidelines and showed a high adaptability to pollution load. The contents of pesticide residues and heavy metals in cultivated vegetables met the national standards. The period required to recoup the investment in the system was approximately 3 years, indicating its good economic feasibility. The present study can provide a valuable reference of the construction of an efficient, low consumption and sustainable urban stormwater treatment system and can contribute to the improvement in the quality of the urban water environment. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Graphical abstract

14 pages, 3347 KiB  
Article
Removal of Nitrogen and Phosphorus in Synthetic Stormwater Runoff by a Porous Asphalt Pavement System with Modified Zeolite Powder Porous Microsphere as a Filter Column
by Hui Luo, Baojie He, Wenhao Zhang and Zhaoqian Jing
Appl. Sci. 2021, 11(22), 10810; https://doi.org/10.3390/app112210810 - 16 Nov 2021
Cited by 3 | Viewed by 2541
Abstract
Porous asphalt pavement (PAP) system is a widely used treatment measure in sustainable stormwater management and groundwater recharge, but their variable performance in nitrogen (N) and phosphorus (P) removal requires further reinforcement prior to widespread uptake. Two laboratory-scale PAP systems were developed by [...] Read more.
Porous asphalt pavement (PAP) system is a widely used treatment measure in sustainable stormwater management and groundwater recharge, but their variable performance in nitrogen (N) and phosphorus (P) removal requires further reinforcement prior to widespread uptake. Two laboratory-scale PAP systems were developed by comparing limestone bedding and zeolite incorporated into modified zeolite powder porous microsphere (MZP-PM) as a filter column under a typical rainfall. The PAP system of zeolite bedding incorporated into MZP-PM (a weight less than 5% of zeolite) removed 74.5% to 90.6% of ammonium (NH4+-N) and 72.9% to 92.4% of total phosphate (TP) from the influent, as compared with 25.7% to 62.7% of NH4+-N and 32.6% to 56.4% of TP by that of the limestone as bed material. This improvement was presumably due to MZP-PM’s high adsorption capacity and surface complexation. The formation of ≡(La)(OH)PO2 was verified to be the dominant pathway for selective phosphate adsorption by MZP-PM and ion-exchange was proved to be the main removal process for ammonium. This study provides promising results for improving N and P removal by modifying a porous asphalt pavement system to include an MZP-PM adsorbent column as a post-treatment. Full article
(This article belongs to the Topic Water Reclamation and Reuse)
Show Figures

Figure 1

9 pages, 1621 KiB  
Article
Evaluation of the Engineering Properties of Powdered Activated Carbon Amendments in Porous Asphalt Pavement
by Shengyi Huang and Chenju Liang
Processes 2021, 9(4), 582; https://doi.org/10.3390/pr9040582 - 26 Mar 2021
Cited by 8 | Viewed by 2669
Abstract
Porous asphalt pavement (PAP) with a high drainage capacity was modified with powdered activated carbon (PAC) addition to produce permeable reactive pavement (PRP), which may exhibit the potential to reduce environmental non-point source (NPS) pollution. The experimental design mixtures used to produce and [...] Read more.
Porous asphalt pavement (PAP) with a high drainage capacity was modified with powdered activated carbon (PAC) addition to produce permeable reactive pavement (PRP), which may exhibit the potential to reduce environmental non-point source (NPS) pollution. The experimental design mixtures used to produce and test the PRP incorporated with PAC (named PRP-PACs) were conducted as follows: first, the PACs were initially tested to determine their feasibility as an additive in PAP; second, different amounts of PAC were added during the preparation of PAP to produce PRP-PAC, and the unregulated and regulated physical characteristics for the mechanical performance of PRP-PACs were examined to ensure that they meet the regulatory specifications. Third, the aqueous contaminants, namely benzene, toluene, ethyl-benzene, and xylene (BTEX), column adsorption tests were preliminarily conducted to demonstrate their adsorption capacities compared to traditional PAP. The compositions of 0.8% and 1.5% PAC (by wt.) (PRP-PAC08 and PRP-PAC15) met all the regulated specifications. As compared to PAP, PRP-PAC08 exhibited higher BTEX adsorption capacities than PAP, which were 47%, 49%, 29% and 2%. PRP-PAC08 showed both superior physical properties and adsorption performance than PAP and may be recommended as an engineering application that reduces the potential for NPS contamination of air, soil, groundwater, and surface water. Full article
(This article belongs to the Special Issue Redesign Processes in the Age of the Fourth Industrial Revolution)
Show Figures

Figure 1

Back to TopTop