Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = porcine fracture model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3014 KiB  
Article
Biomechanical Performance and Handling of Mineral–Organic Adhesive Bone Cements Based on Magnesium Under Clinical Test Conditions
by Stefanie Hoelscher-Doht, Alexandra Fabian, Lasse Bögelein, Eva Kupczyk, Rainer H. Meffert, Uwe Gbureck and Tobias Renner
J. Clin. Med. 2025, 14(9), 3081; https://doi.org/10.3390/jcm14093081 - 29 Apr 2025
Viewed by 630
Abstract
Background/Objectives: Biomineral adhesive bone adhesives composed of phosphoserine combined with magnesium oxides or phosphates exhibit exceptional adhesive properties. This study evaluates two experimental mineral–organic cementitious adhesives in a clinical test setup, investigating their potential for fracture reduction and simultaneous defect filling. Methods [...] Read more.
Background/Objectives: Biomineral adhesive bone adhesives composed of phosphoserine combined with magnesium oxides or phosphates exhibit exceptional adhesive properties. This study evaluates two experimental mineral–organic cementitious adhesives in a clinical test setup, investigating their potential for fracture reduction and simultaneous defect filling. Methods: The two experimental adhesives (Groups B and C) and a standard hydroxyapatite cement (Group A, reference) underwent compressive strength testing, shear strength testing, and screw pullout tests as part of a first biomechanical characterization. Furthermore, all materials were tested in a porcine tibial split depression fracture model, where they served both for fracture reduction and for filling the metaphyseal bone defect, supplementary to plate osteosynthesis. Fracture stability was assessed under cyclic loading in a materials testing machine. Results: The OPLS (O-phospho-L-serine) containing adhesive (Group B) demonstrated the highest compressive strength as well as the highest shear strength. All three materials showed comparable maximum pullout forces. Both experimental adhesives (Groups B and C) exhibited higher pullout stiffness compared to the standard cement (Group A). In the fracture model, no significant differences in displacement under cyclic loading were observed between groups. Conclusions: The biomineral adhesive bone adhesives (Groups B and C) demonstrated biomechanical advantages in axial compression, adhesive (shear) strength, and screw fixation compared to the standard hydroxyapatite cement (Group A). Furthermore, they achieved comparable stabilization of metaphyseal fractures under clinically relevant dynamic loading conditions. Full article
(This article belongs to the Special Issue Advances in Trauma and Orthopedic Surgery: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 5085 KiB  
Article
Removal Forces of a Helical Microwire Structure Electrode
by Amelia Howe, Zhanda Chen, Kyle Golobish, Victoria R. Miduri, Derrick Liu, David Valencia, Morgan McGaughey, Emily Szabo, Manfred Franke and Stephan Nieuwoudt
Bioengineering 2024, 11(6), 611; https://doi.org/10.3390/bioengineering11060611 - 13 Jun 2024
Cited by 1 | Viewed by 1611
Abstract
(1) Background: Medical devices, especially neuromodulation devices, are often explanted for a variety of reasons. The removal process imparts significant forces on these devices, which may result in device fracture and tissue trauma. We hypothesized that a device’s form factor interfacing with tissue [...] Read more.
(1) Background: Medical devices, especially neuromodulation devices, are often explanted for a variety of reasons. The removal process imparts significant forces on these devices, which may result in device fracture and tissue trauma. We hypothesized that a device’s form factor interfacing with tissue is a major driver of the force required to remove a device, and we isolated helical and linear electrode structures as a means to study atraumatic removal. (2) Methods: Ductile linear and helical microwire structure electrodes were fabricated from either Gold (Au) or Platinum–Iridium (Pt-Ir, 90-10). Removal forces were captured from synthetic gel models and following chronic implantation in rodent and porcine models. Devices were fully implanted in the animal models, requiring a small incision (<10 mm) and removal via tissue forceps. (3) Results: Helical devices were shown to result in significantly lower maximal removal forces in both synthetic gel and rodent studies compared to their linear counterparts. Chronically (1 yr.), the maximal removal force of helical devices remained under 7.30 N, for which the Platinum–Iridium device’s tensile failure force was 32.90 ± 2.09 N, resulting in a safety factor of 4.50. (4) Conclusions: An open-core helical structure that can freely elongate was shown to result in reduced removal forces both acutely and chronically. Full article
(This article belongs to the Special Issue Medical Devices and Implants, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 2373 KiB  
Article
Experimentally Validated Finite Element Analysis of Thoracic Spine Compression Fractures in a Porcine Model
by Sacha Guitteny, Cadence F. Lee and Farid Amirouche
Bioengineering 2024, 11(1), 96; https://doi.org/10.3390/bioengineering11010096 - 18 Jan 2024
Cited by 1 | Viewed by 2498
Abstract
Vertebral compression fractures (VCFs) occur in 1 to 1.5 million patients in the US each year and are associated with pain, disability, altered pulmonary function, secondary vertebral fracture, and increased mortality risk. A better understanding of VCFs and their management requires preclinical models [...] Read more.
Vertebral compression fractures (VCFs) occur in 1 to 1.5 million patients in the US each year and are associated with pain, disability, altered pulmonary function, secondary vertebral fracture, and increased mortality risk. A better understanding of VCFs and their management requires preclinical models that are both biomechanically analogous and accessible. We conducted a study using twelve spinal vertebrae (T12–T14) from porcine specimens. We created mathematical simulations of vertebral compression fractures (VCFs) using CT scans for reconstructing native anatomy and validated the results by conducting physical axial compression experiments. The simulations accurately predicted the behavior of the physical compressions. The coefficient of determination for stiffness was 0.71, the strength correlation was 0.88, and the failure of the vertebral bodies included vertical splitting on the lateral sides or horizontal separation in the anterior wall. This finite element method has important implications for the preventative, prognostic, and therapeutic management of VCFs. This study also supports the use of porcine specimens in orthopedic biomechanical research. Full article
(This article belongs to the Special Issue Computational Biomechanics, Volume II)
Show Figures

Figure 1

17 pages, 3716 KiB  
Article
Layer-Specific Damage Modeling of Porcine Large Intestine under Biaxial Tension
by Aroj Bhattarai, Charlotte Anabell May, Manfred Staat, Wojciech Kowalczyk and Thanh Ngoc Tran
Bioengineering 2022, 9(10), 528; https://doi.org/10.3390/bioengineering9100528 - 6 Oct 2022
Cited by 4 | Viewed by 2754
Abstract
The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to [...] Read more.
The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads. Full article
(This article belongs to the Special Issue Computational Biomechanics)
Show Figures

Figure 1

12 pages, 2802 KiB  
Article
I-FABP as a Potential Marker for Intestinal Barrier Loss in Porcine Polytrauma
by Jan Tilmann Vollrath, Felix Klingebiel, Felix Bläsius, Johannes Greven, Eftychios Bolierakis, Aleksander J. Nowak, Marija Simic, Frank Hildebrand, Ingo Marzi and Borna Relja
J. Clin. Med. 2022, 11(15), 4599; https://doi.org/10.3390/jcm11154599 - 7 Aug 2022
Cited by 12 | Viewed by 2347
Abstract
Polytrauma and concomitant hemorrhagic shock can lead to intestinal damage and subsequent multiple organ dysfunction syndrome. The intestinal fatty acid-binding protein (I-FABP) is expressed in the intestine and appears quickly in the circulation after intestinal epithelial cell damage. This porcine animal study investigates [...] Read more.
Polytrauma and concomitant hemorrhagic shock can lead to intestinal damage and subsequent multiple organ dysfunction syndrome. The intestinal fatty acid-binding protein (I-FABP) is expressed in the intestine and appears quickly in the circulation after intestinal epithelial cell damage. This porcine animal study investigates the I-FABP dynamics in plasma and urine after polytrauma. Furthermore, it evaluates to what extent I-FABP can also act as a marker of intestinal damage in a porcine polytrauma model. Eight pigs (Sus scrofa) were subjected to polytrauma which consisted of lung contusion, tibial fracture, liver laceration, and hemorrhagic shock followed by blood and fluid resuscitation and fracture fixation with an external fixator. Eight sham animals were identically instrumented but not injured. Afterwards, intensive care treatment including mechanical ventilation for 72 h followed. I-FABP levels in blood and urine were determined by ELISA. In addition, immunohistological staining for I-FABP, active caspase-3 and myeloperoxidase were performed after 72 h. Plasma and urine I-FABP levels were significantly increased shortly after trauma. I-FABP expression in intestinal tissue showed significantly lower expression in polytraumatized animals vs. sham. Caspase-3 and myeloperoxidase expression in the immunohistological examination were significantly higher in the jejunum and ileum of polytraumatized animals compared to sham animals. This study confirms a loss of intestinal barrier after polytrauma which is indicated by increased I-FABP levels in plasma and urine as well as decreased I-FABP levels in immunohistological staining of the intestine. Full article
(This article belongs to the Special Issue Clinical Management and Challenges in Polytrauma)
Show Figures

Figure 1

14 pages, 3587 KiB  
Article
Biomechanical Performance of BoneHelix® Compared with Elastic Stable Intramedullary Nailing (ESIN) in a Pediatric Tibia Fracture Model
by Laura Leonie Brandes, Luis Fernando Nicolini, Johannes Greven, Philipp Lichte, Thomas Thaddäus Stopinski, Martin Sattler, Frank Hildebrand and Miguel Pishnamaz
Life 2021, 11(11), 1189; https://doi.org/10.3390/life11111189 - 5 Nov 2021
Cited by 3 | Viewed by 2686
Abstract
Tibial shaft fractures are common injuries in the pediatric and adolescent populations. Elastic stable intramedullary nailing (ESIN) is the treatment of choice for cases that require surgical stabilization. A new intramedullary device, BoneHelix® (BH), may be an alternative for use with fractures [...] Read more.
Tibial shaft fractures are common injuries in the pediatric and adolescent populations. Elastic stable intramedullary nailing (ESIN) is the treatment of choice for cases that require surgical stabilization. A new intramedullary device, BoneHelix® (BH), may be an alternative for use with fractures that cannot be satisfactorily stabilized with ESIN. This study aimed to assess the biomechanical performance of BH compared with ESIN in a porcine tibia fracture model, observing cyclic fatigue and load to failure. Computed tomography was used to monitor the implant position and to rule out unintended damage. No implant or bone failure occurred during the fatigue testing. An increase in the cumulative plastic displacement was observed in both test groups over the loading cycles applied. Both implant–bone constructs displayed a trend toward closure of the osteotomy gap. During the load-to-failure test, the average loads at failure in specimens instrumented with ESIN and BH were 5364 N (±723) and 4350 N (±893), respectively, which were not statistically significant (p = 0.11). The values of both groups were two to three times higher than the estimated maximal load (2000 N) during physiological weight bearing. The biomechanical results thus indicate equivalent performance and stability by the implants tested. Full article
(This article belongs to the Special Issue Healing after Trauma)
Show Figures

Graphical abstract

Back to TopTop