Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = polypropylene plastic textile fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7626 KiB  
Article
Performance Analysis and Admixture Optimization of GBFS-HPMC/Fiber Pervious Concrete
by Xiwen Yan, Xuezhi Wang, Chuanwu Sun, Ming Xin and Jingjing He
Materials 2023, 16(19), 6455; https://doi.org/10.3390/ma16196455 - 28 Sep 2023
Cited by 8 | Viewed by 1585
Abstract
Permeable pavements can decrease the volume of stormwater, thereby mitigating the risk of flooding and reducing the urban heat island effect. This study investigated the influence of incorporating granulated blast-furnace slag (GBFS), hydroxypropyl methylcellulose (HPMC), and polypropylene plastic textile fiber (PPTF) on the [...] Read more.
Permeable pavements can decrease the volume of stormwater, thereby mitigating the risk of flooding and reducing the urban heat island effect. This study investigated the influence of incorporating granulated blast-furnace slag (GBFS), hydroxypropyl methylcellulose (HPMC), and polypropylene plastic textile fiber (PPTF) on the mechanical properties and water permeability of pervious concrete. Orthogonal tests were employed to conduct the analysis. The findings indicate that the pervious concrete with GBFS, HPMC, and PPTF (termed GBFS-HPMC/fiber pervious concrete) exhibited the highest cubic compressive strength, ultimate tensile strength, and flexural strength. These values were 25.22 MPa, 3.36 MPa, and 5.39 MPa, respectively. The standard deviations for cubic compressive strength, split tensile strength, flexural strength, water permeability coefficient, and porosity, as calculated using SPSS, were 1.57, 0.1, 1.17, 0.35, and 0.4, respectively. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to analyze the microstructure and compositional combinations of the pervious concrete. The analyses revealed that the calcium-silicate-hydrate (C-S-H) gel, produced by GBFS hydration, enhanced the bonding within the interfacial transition zone (ITZ) and between the fibers and aggregates. Additionally, the anchoring and supporting effects of the PPTF in the matrix contributed to stabilizing the overall matrix structure. Lastly, a gray correlation analysis was applied to optimize the admixture. The findings indicate that following the optimization, the cubic compressive strength increased by 7.2%, splitting tensile strength by 2.1%, and flexural strength by 2.5%. In summary, the mechanical properties of pervious concrete improved after optimizing the admixture. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

13 pages, 2673 KiB  
Article
Development of Interior and Exterior Automotive Plastics Parts Using Kenaf Fiber Reinforced Polymer Composite
by Akubueze Emmanuel Uzoma, Chiemerie Famous Nwaeche, Md. Al-Amin, Oluwa Segun Muniru, Ololade Olatunji and Sixtus Onyedika Nzeh
Eng 2023, 4(2), 1698-1710; https://doi.org/10.3390/eng4020096 - 17 Jun 2023
Cited by 10 | Viewed by 4204
Abstract
The integration of sustainable components in automotive parts is in growing demand. This study involves the entire process, from the extraction of kenaf cellulosic fibers to the fabrication of automotive parts by applying injection molding (sample only) and Resin Transfer Molding (RTM) techniques. [...] Read more.
The integration of sustainable components in automotive parts is in growing demand. This study involves the entire process, from the extraction of kenaf cellulosic fibers to the fabrication of automotive parts by applying injection molding (sample only) and Resin Transfer Molding (RTM) techniques. Fibers were pretreated, followed by moisture content analysis before composite fabrication. The composite was fabricated by integrating the fibers with polypropylene, maleic anhydride polypropylene (MAPP), unsaturated polyester, and epoxy resin. Mechanical tests were done following ASTM D5083, ASTM D256, and ASTM D5229 standards. The RTM technique was applied for the fabrication of parts with reinforced kenaf long bast fibers. RTM indicated a higher tensile strength of 55 MPa at an optimal fiber content of 40%. Fiber content from 10% to 40% was found to be compatible with or better than the control sample in mechanical tests. Scanning Electron Microscope (SEM) images showed both fiber-epoxy-PE bonding along with normal irregularities in the matrix. The finite element simulations for the theoretical analysis of the mechanical performance characteristics showed higher stiffness and strength in the direction parallel to the fiber orientation. This study justifies the competitiveness of sustainable textile fibers as a reinforcement for plastics to use in composite materials for automotive industries. Full article
(This article belongs to the Special Issue REPER Recent Materials Engineering Performances)
Show Figures

Figure 1

24 pages, 1509 KiB  
Review
Microplastics in Freshwater: A Focus on the Russian Inland Waters
by Yulia Frank, Alexandra Ershova, Svetlana Batasheva, Egor Vorobiev, Svetlana Rakhmatullina, Danil Vorobiev and Rawil Fakhrullin
Water 2022, 14(23), 3909; https://doi.org/10.3390/w14233909 - 1 Dec 2022
Cited by 22 | Viewed by 5869
Abstract
The low production costs and useful properties of synthetic polymers have led to their ubiquitous use, from food packaging and household products to high-tech applications in medicine and electronics. Incomplete recycling of plastic materials results in an accumulation of plastic waste, which slowly [...] Read more.
The low production costs and useful properties of synthetic polymers have led to their ubiquitous use, from food packaging and household products to high-tech applications in medicine and electronics. Incomplete recycling of plastic materials results in an accumulation of plastic waste, which slowly degrades to produce tiny plastic particles, commonly known as “microplastics” (MPs). MPs can enter water bodies, but only recently the problem of MP pollution of sea and fresh waters has become clearly evident and received considerable attention. This paper critically reviews the accumulated data about the distribution of MPs in the freshwater ecosystems of Russia. The available data on MP abundance in the lakes and river systems of the Russian Federation are analyzed (including the large Lakes Baikal, Ladoga, Onego, Imandra and Teletskoe, and the Volga, Northern Dvina, Ob, and Yenisei Rivers within their tributaries) and compared with the data on freshwater MP contents in other countries. In Russia, the main sources of MP pollution for rivers and lakes are domestic wastewater, containing microfibers of synthetic textiles, fishing tackle, and plastic waste left on shores. Among the MPs detected in the surface waters and bottom sediments, polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) particles predominate. The most common types of MPs in the surface freshwaters are fibers and fragments, with fibers prevailing in the bottom sediments. The reported average MP concentrations in the waters range from 0.007 items/m3 at the mouth of the Northern Dvina River to 11,000 items/m3 in the Altai lakes. However, the estimates obtained in different studies must be compared with great precaution because of significant differences in the methods used for MP quantification. The approaches to further improve the relevance of research into MP pollution of fresh waters are suggested. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

22 pages, 3788 KiB  
Article
Upgrading Recycled Polypropylene from Textile Wastes in Wood Plastic Composites with Short Hemp Fiber
by Francisco Burgada, Eduardo Fages, Luis Quiles-Carrillo, Diego Lascano, Juan Ivorra-Martinez, Marina P. Arrieta and Octavio Fenollar
Polymers 2021, 13(8), 1248; https://doi.org/10.3390/polym13081248 - 12 Apr 2021
Cited by 45 | Viewed by 6251
Abstract
This research reports the manufacturing and characterization of green composites made from recycled polypropylene obtained from the remnants of polypropylene non-woven fabrics used in the textile industry and further reinforced with short hemp fibers (SHFs). To improve the interaction of the reinforcing fibers [...] Read more.
This research reports the manufacturing and characterization of green composites made from recycled polypropylene obtained from the remnants of polypropylene non-woven fabrics used in the textile industry and further reinforced with short hemp fibers (SHFs). To improve the interaction of the reinforcing fibers with the recycled polymeric matrix, two types of compatibilizing agents (maleic anhydride grafted, PP-g-MA, and maleinized linseed oil, MLO) were added during melt-processing, the percentage of which had to remain constant concerning the amount of fiber loading to ensure complete reactivity. Standardized test specimens were obtained by injection molding. The composites were characterized by mechanical (tensile, impact, and hardness), thermal (DSC, TGA), thermomechanical, FTIR, and FESEM microscopy tests. In addition, color and water uptake properties were also analyzed. The results show that the addition of PP-g-MA to rPP was satisfactory, thus improving the fiber-matrix interaction, resulting in a marked reinforcing effect of the hemp fibers in the recycled PP matrix, which can be reflected in the increased stiffness of the samples. In parallel to the compatibilizing effect, a plasticizing effect was obtained by incorporating MLO, causing a decrease in the glass transition temperature of the composites by approximately 6 °C and an increase in ductility compared to the unfilled recycled polypropylene samples. Full article
Show Figures

Graphical abstract

11 pages, 415 KiB  
Article
Fabrication of Extrinsically Conductive Silicone Rubbers with High Elasticity and Analysis of Their Mechanical and Electrical Characteristics
by Anjum Saleem, Lars Frormann and Alexandru Soever
Polymers 2010, 2(3), 200-210; https://doi.org/10.3390/polym2030200 - 10 Aug 2010
Cited by 43 | Viewed by 13070
Abstract
Conductive plastics are attracting more and more interest in electronics due to their light weight and inability to rust, which are common problems associated with metals. The field of conducting plastics is not new. Much work has been done to impart electrical conductivity [...] Read more.
Conductive plastics are attracting more and more interest in electronics due to their light weight and inability to rust, which are common problems associated with metals. The field of conducting plastics is not new. Much work has been done to impart electrical conductivity to mechanically strong polymers such as polypropylene, polycarbonate and epoxies, etc. However there is a need to fabricate more flexible and elastic conductive polymers such as conducting silicone rubbers for use in various applications. In this work silicone rubbers reinforced with conductive fillers have been fabricated for use as sensors in textiles to detect the resistance change produced by stretching or relaxing. The variations of electrical resistance have been investigated by stretching and releasing the strands of conductive rubbers as a function of time. Two types of silicone rubbers—addition cured and condensation cured—were compounded with different electrically conductive fillers, among which carbon fibers have shown the best results. The carbon fibers improved the electrical conductance of the rubbers, even in very low weight percentages. The increasing concentration of fillers decreases the elasticity of the rubber. In order to keep the original properties of silicones, the filler concentration was kept as low as possible to produce a significantly detectable signal. The fabricated compounds were analyzed for their mechanical properties by stress strain curves. Such materials find their applications in electronics, antistatic applications, sports and the automotive industry where they can be used as deformation sensors. Full article
(This article belongs to the Special Issue Conductive Polymers)
Show Figures

Graphical abstract

Back to TopTop