Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = polypeptide nanogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1838 KiB  
Article
l-Cystine-Crosslinked Polypeptide Nanogel as a Reduction-Responsive Excipient for Prostate Cancer Chemotherapy
by Liang He, Di Li, Zhongtang Wang, Weiguo Xu, Jixue Wang, Hui Guo, Chunxi Wang and Jianxun Ding
Polymers 2016, 8(2), 36; https://doi.org/10.3390/polym8020036 - 29 Jan 2016
Cited by 33 | Viewed by 7953
Abstract
Smart polymer nanogel-assisted drug delivery systems have attracted more and more attention in cancer chemotherapy because of their well-defined morphologies and pleiotropic functions in recent years. In this work, an l-cystine-crosslinked reduction-responsive polypeptide nanogel of methoxy poly(ethylene glycol)-poly(l-phenylalanine-co- [...] Read more.
Smart polymer nanogel-assisted drug delivery systems have attracted more and more attention in cancer chemotherapy because of their well-defined morphologies and pleiotropic functions in recent years. In this work, an l-cystine-crosslinked reduction-responsive polypeptide nanogel of methoxy poly(ethylene glycol)-poly(l-phenylalanine-co-l-cystine) (mPEG-P(LP-co-LC)) was employed as a smart excipient for RM-1 prostate cancer (PCa) chemotherapy. Doxorubicin (DOX), as a regular chemotherapy drug, was embedded in the nanogel. The loading nanogel marked as NG/DOX was shown to exhibit glutathione (GSH)-induced swelling and GSH-accelerated DOX release. Subsequently, NG/DOX showed efficient cellular uptake and proliferation inhibition. Furthermore, NG/DOX presented enhanced antitumor efficacy and security in an RM-1 PCa-grafted mouse model in vivo, indicating its great potential for clinical treatment. Full article
(This article belongs to the Special Issue Functional Polymers for Medical Applications)
Show Figures

Graphical abstract

41 pages, 10039 KiB  
Review
Layer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels
by Ana M. Díez-Pascual and Peter S. Shuttleworth
Materials 2014, 7(11), 7472-7512; https://doi.org/10.3390/ma7117472 - 21 Nov 2014
Cited by 46 | Viewed by 10294
Abstract
This review deals with the layer-by-layer (LbL) assembly of polyelectrolyte multilayers of biopolymers, polypeptides (i.e., poly-l-lysine/poly-l-glutamic acid) and polysaccharides (i.e., chitosan/dextran sulphate/sodium alginate), onto thermo- and/or pH-responsive micro- and nano-gels such as those based on synthetic poly(N-isopropylacrylamide) [...] Read more.
This review deals with the layer-by-layer (LbL) assembly of polyelectrolyte multilayers of biopolymers, polypeptides (i.e., poly-l-lysine/poly-l-glutamic acid) and polysaccharides (i.e., chitosan/dextran sulphate/sodium alginate), onto thermo- and/or pH-responsive micro- and nano-gels such as those based on synthetic poly(N-isopropylacrylamide) (PNIPAM) and poly(acrylic acid) (PAA) or biodegradable hyaluronic acid (HA) and dextran-hydroxyethyl methacrylate (DEX-HEMA). The synthesis of the ensembles and their characterization by way of various techniques is described. The morphology, hydrodynamic size, surface charge density, bilayer thickness, stability over time and mechanical properties of the systems are discussed. Further, the mechanisms of interaction between biopolymers and gels are analysed. Results demonstrate that the structure and properties of biocompatible multilayer films can be finely tuned by confinement onto stimuli-responsive gels, which thus provides new perspectives for biomedical applications, particularly in the controlled release of biomolecules, bio-sensors, gene delivery, tissue engineering and storage. Full article
(This article belongs to the Special Issue Gel-Based Particles for Biological and Environmental Applications)
Show Figures

Figure 1

Back to TopTop