Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = polymer banknote

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4597 KB  
Article
Application of Starch Based Coatings as a Sustainable Solution to Preserve and Decipher the Charred Documents
by Sonali Kesarwani, Divya Bajpai Tripathy and Suneet Kumar
Coatings 2023, 13(9), 1521; https://doi.org/10.3390/coatings13091521 - 30 Aug 2023
Cited by 3 | Viewed by 3371
Abstract
Fire can be one of the most destructive elements to cause devastation. Fire can completely or partly destroy any crucial and invaluable documents, such as banknotes, books, affidavits, etc., in a couple of minutes. Moreover, the documents can also be damaged by heat, [...] Read more.
Fire can be one of the most destructive elements to cause devastation. Fire can completely or partly destroy any crucial and invaluable documents, such as banknotes, books, affidavits, etc., in a couple of minutes. Moreover, the documents can also be damaged by heat, smoke, soot, and water during an accident. The burnt documents become fragile, losing their identity, which may have some evidentiary value related to the incident. Therefore, there is a strong need for processing to procure, preserve, and decipher, i.e., to restore the texts written on them. Hence, the present research focuses on developing a new method using natural polysaccharides, i.e., starch, to preserve and decipher the contents of charred documents. The most suitable concentration of starch analog was found to be 6% microwaved at 80 °C for about 10 min. As soon as the charred documents were coated with 6% starch analog, the majority of the invisible texts became visible to the naked eye in a second. Moreover, the application of a synthesized analog of polysaccharide on fragile charred documents provided an appreciable increase in strength by almost 0.1 kg/cm2 for the coated charred documents of each paper type compared to that of non-coated ones and made them stabilized. This research also involves the use of easy and advanced handwriting recognition techniques (HCR) using an easily accessible, free platform, G-lens, that successfully recognized the majority of texts deciphered using 6% starch analog and converted them from captured images to a readable and copyable text format. Furthermore, the document visualization under VSC also gave a promising result by enhancing and deciphering the non-visible and less visible texts under flood light and white spot light at 715 and 695 long passes. Hence, this study offers an environmentally friendly, cost-effective, and sustainable approach of using a natural polysaccharide instead of synthetic polymers for the preservation and decipherment of charred documents. Full article
(This article belongs to the Special Issue Advanced Coating Material for Heritage Preservation)
Show Figures

Figure 1

22 pages, 5172 KB  
Review
Polymer Banknotes: A Review of Materials, Design, and Printing
by Amirmohammad Rafiei, Amirhossein Karimi and Mahdi Bodaghi
Sustainability 2023, 15(4), 3736; https://doi.org/10.3390/su15043736 - 17 Feb 2023
Cited by 5 | Viewed by 34369
Abstract
Nowadays, more than 45 countries in the world use polymer banknotes in their monetary and banking systems. It is expected that by 2030, another 20 countries will abandon the use of paper banknotes and switch to polymer banknotes. Recent research shows that several [...] Read more.
Nowadays, more than 45 countries in the world use polymer banknotes in their monetary and banking systems. It is expected that by 2030, another 20 countries will abandon the use of paper banknotes and switch to polymer banknotes. Recent research shows that several countries in the Middle East and the European Union will switch to printing and using polymer banknotes soon due to the advantages of polymer banknotes. Polymer banknotes are made of polymeric materials. They possess very special optical security features and promote sustainability in the world, which motivated us to review recent materials, design, optical technologies, and printing methods in this respect. Since the topic of polymer banknotes is new and there are not many articles and research about them, this review specifically focuses on the structure of the constituent materials and security features and their reuse with an emphasis on sustainability and environmentally friendly banknotes. Specifically, analyses of 3D polymer films and the security properties of polymer banknotes are carried out. Finally, comparison studies with paper banknotes are performed, and pertinent conclusions are outlined. Full article
(This article belongs to the Special Issue Sustainable 3D/4D Printing Systems, Materials, and Applications)
Show Figures

Figure 1

13 pages, 2265 KB  
Article
Microbial Contamination and Survival Rate on Different Types of Banknotes
by Derniza Cozorici, Roxana-Alexandra Măciucă, Costel Stancu, Bianca-Maria Tihăuan, Robert Bogdan Uță, Cosmin Iulian Codrea, Răzvan Matache, Cristian-Emilian Pop, Robert Wolff and Sergiu Fendrihan
Int. J. Environ. Res. Public Health 2022, 19(7), 4310; https://doi.org/10.3390/ijerph19074310 - 4 Apr 2022
Cited by 12 | Viewed by 5942
Abstract
In the COVID-19 pandemic context, numerous concerns have been raised regarding the hygienic status of certain objects we interact with on a daily basis, and especially cash money and their potential to harbor and transmit pathogenic bacteria. Therefore, in the present study, we [...] Read more.
In the COVID-19 pandemic context, numerous concerns have been raised regarding the hygienic status of certain objects we interact with on a daily basis, and especially cash money and their potential to harbor and transmit pathogenic bacteria. Therefore, in the present study, we analyzed different currency bills represented by British pounds (5 £, 10 £ and 20 £), Romanian lei (1 leu, 5 lei and 10 lei), U.S. dollars (1 $, 5 $ and 10 $) and Euros (5 €, 10 € and 20 €) in order to evaluate the bacterial survival rate and bacterial adherence. We used five reference microorganisms by American Type Culture Collection (ATCC, Manassas, VA, USA): Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 8739, Enterococcus sp. ATCC 19952, Salmonella enterica subsp. enterica serovar Typhi ATCC 6539, and Listeria monocytogenes ATCC 7644. Microorganisms were selected in accordance with the criteria of prevalence, pathogenicity, opportunism, and incidence. However, Maldi-TOF analysis from samples taken from the banknotes revealed only a few of the common pathogens that are traditionally thought to be found on banknotes. Some of the most important factors for the survival of pathogenic agents on surfaces are the presence of organic matter, temperature and humidity. Our data showed that Salmonella enterica survived 72 h on every banknote tested, while L. monocytogenes tended to improve persistence in humid conditions. Survival rate is also influenced by the substrate composition, being lower for polymer-based banknotes especially for Salmonella enterica, Listeria monocytogenes and Enterococcus sp. The adherence of bacterial strains was lower for polymer-based banknotes British pounds and Romanian Leu, in contrast to the cotton-based U.S dollars and Euro banknotes. The risk of bacterial contamination from the banknote bills is high as indicated by both a strong survival capacity and low adherence of tested bacteria with differences between the two types of materials used for the tested banknotes. Full article
Show Figures

Figure 1

12 pages, 2033 KB  
Article
Dirty Money: A Matter of Bacterial Survival, Adherence, and Toxicity
by Frank Vriesekoop, Jing Chen, Jenna Oldaker, Flavien Besnard, Reece Smith, William Leversha, Cheralee Smith-Arnold, Julie Worrall, Emily Rufray, Qipeng Yuan, Hao Liang, Amalia Scannell and Cryn Russell
Microorganisms 2016, 4(4), 42; https://doi.org/10.3390/microorganisms4040042 - 23 Nov 2016
Cited by 12 | Viewed by 11804
Abstract
In this study we report the underlying reasons to why bacteria are present on banknotes and coins. Despite the use of credit cards, mobile phone apps, near-field-communication systems, and cryptocurrencies such as bitcoins which are replacing the use of hard currencies, cash exchanges [...] Read more.
In this study we report the underlying reasons to why bacteria are present on banknotes and coins. Despite the use of credit cards, mobile phone apps, near-field-communication systems, and cryptocurrencies such as bitcoins which are replacing the use of hard currencies, cash exchanges still make up a significant means of exchange for a wide range of purchases. The literature is awash with data that highlights that both coins and banknotes are frequently identified as fomites for a wide range of microorganisms. However, most of these publications fail to provide any insight into the extent to which bacteria adhere and persist on money. We treated the various currencies used in this study as microcosms, and the bacterial loading from human hands as the corresponding microbiome. We show that the substrate from which banknotes are produced have a significant influence on both the survival and adherence of bacteria to banknotes. Smooth, polymer surfaces provide a poor means of adherence and survival, while coarser and more fibrous surfaces provide strong bacterial adherence and an environment to survive on. Coins were found to be strongly inhibitory to bacteria with a relatively rapid decline in survival on almost all coin surfaces tested. The inhibitory influence of coins was demonstrated through the use of antimicrobial disks made from coins. Despite the toxic effects of coins on many bacteria, bacteria do have the ability to adapt to the presence of coins in their environment which goes some way to explain the persistent presence of low levels of bacteria on coins in circulation. Full article
Show Figures

Figure 1

Back to TopTop