Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = polyethylenimine ethoxylated (PEIE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2496 KiB  
Article
Perovskite Photo-Sensors with Solution-Processed TiO2 under Low Temperature Process and Ultra-Thin Polyethylenimine Ethoxylated as Electron Injection Layer
by Ikuma Hirano, Kazuya Maruyama, Congcong Zhang and Hiroyuki Okada
Crystals 2022, 12(7), 914; https://doi.org/10.3390/cryst12070914 - 27 Jun 2022
Cited by 2 | Viewed by 2230
Abstract
A perovskite photo-sensor is promising for a lightweight, thin, flexible, easy-to-coat fabrication process, and a higher incident photon-to-current conversion efficiency. We have investigated perovskite photo-sensors with a solution-processed compact TiO2 under a low-temperature process and an ultra-thin polyethylenimine ethoxylated (PEIE) as an [...] Read more.
A perovskite photo-sensor is promising for a lightweight, thin, flexible, easy-to-coat fabrication process, and a higher incident photon-to-current conversion efficiency. We have investigated perovskite photo-sensors with a solution-processed compact TiO2 under a low-temperature process and an ultra-thin polyethylenimine ethoxylated (PEIE) as an electron injection layer. The TiO2 film is grown from an aqueous solution of titanium tetrachloride (TiCl4) at 70 °C by a chemical bath deposition method. For an alternative process, the ultra-thin PEIE is spin coated on the TiO2 film. Then, the perovskite layer is deposited on the substrate by the one- or two-step methods in the glovebox. Next, a hole transport layer of 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-9, 9-spiro-bifluorene (Spiro-OMeTAD) solution is spin coated. The fabricated device structure is a photodiode structure of FTO/TiO2/(without or with) PEIE/(one- or two-step) perovskite layer/Spiro-OMeTAD/Au. For the sensing characteristics, a ratio of photo-to-dark-current density was 2.88 × 104 for the device with PEIE layer. In addition, a power-law relationship is discussed. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

12 pages, 3941 KiB  
Article
Polyethylenimine-Ethoxylated Interfacial Layer for Efficient Electron Collection in SnO2-Based Inverted Organic Solar Cells
by Ikram Anefnaf, Safae Aazou, Guy Schmerber, Siham Refki, Nicolas Zimmermann, Thomas Heiser, Gérald Ferblantier, Abdelilah Slaoui, Aziz Dinia, Mohammed Abd-Lefdil and Zouheir Sekkat
Crystals 2020, 10(9), 731; https://doi.org/10.3390/cryst10090731 - 20 Aug 2020
Cited by 15 | Viewed by 5499
Abstract
In this work, we studied inverted organic solar cells based on bulk heterojunction using poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C71-butyric acid methyl ester (P3HT:PCBM) as an active layer and a novel cathode buffer bilayer consisting of tin dioxide (SnO2) combined with polyethylenimine-ethoxylated (PEIE) to overcome the [...] Read more.
In this work, we studied inverted organic solar cells based on bulk heterojunction using poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C71-butyric acid methyl ester (P3HT:PCBM) as an active layer and a novel cathode buffer bilayer consisting of tin dioxide (SnO2) combined with polyethylenimine-ethoxylated (PEIE) to overcome the limitations of the single cathode buffer layer. The combination of SnO2 with PEIE is a promising approach that improves the charge carrier collection and reduces the recombination. The efficient device, which is prepared with a cathode buffer bilayer of 20 nm SnO2 combined with 10 nm PEIE, achieved Jsc = 7.86 mA/cm2, Voc = 574 mV and PCE = 2.84%. The obtained results exceed the performances of reference solar cell using only a single cathode layer of either SnO2 or PEIE. Full article
(This article belongs to the Special Issue Organic Photovoltaic)
Show Figures

Graphical abstract

10 pages, 1009 KiB  
Article
Hybrid Lead-Halide Polyelectrolytes as Interfacial Electron Extraction Layers in Inverted Organic Solar Cells
by Jin Hee Lee, Yu Jung Park, Jung Hwa Seo and Bright Walker
Polymers 2020, 12(4), 743; https://doi.org/10.3390/polym12040743 - 27 Mar 2020
Cited by 12 | Viewed by 3227
Abstract
A series of lead-halide based hybrid polyelectrolytes was prepared and used as interfacial layers in organic solar cells (OSCs) to explore their effect on the energy band structures and performance of OSCs. Nonconjugated polyelectrolytes based on ethoxylated polyethylenimine (PEIE) complexed with PbX2 [...] Read more.
A series of lead-halide based hybrid polyelectrolytes was prepared and used as interfacial layers in organic solar cells (OSCs) to explore their effect on the energy band structures and performance of OSCs. Nonconjugated polyelectrolytes based on ethoxylated polyethylenimine (PEIE) complexed with PbX2 (I, Br, and Cl) were prepared as polymeric analogs of the perovskite semiconductors CH3NH3PbX3. The organic/inorganic hybrid composites were deposited onto Indium tin oxide (ITO) substrates by solution processing, and ultraviolet photoelectron spectroscopy (UPS) measurements confirmed that the polyelectrolytes allowed the work function of the substrates to be controlled. In addition, X-ray photoelectron spectroscopy (XPS) results showed that Pb(II) halide complexes were present in the thin film and that the Pb halide species did not bond covalently with the cationic polymer and confirmed the absence of additional chemical bonds. The composite ratio of organic and inorganic materials was optimized to improve the performance of OSCs. When PbBr2 was complexed with the PEIE material, the efficiency increased up to 3.567% via improvements in open circuit voltage and fill factor from the control device (0.3%). These results demonstrate that lead-halide based polyelectrolytes constitute hybrid interfacial layers which provide a novel route to control device characteristics via variation of the lead halide composition. Full article
(This article belongs to the Special Issue Conjugated Oligomers and Polymer Nanomaterials)
Show Figures

Graphical abstract

12 pages, 2300 KiB  
Article
Low Temperature Aqueous Solution-Processed ZnO and Polyethylenimine Ethoxylated Cathode Buffer Bilayer for High Performance Flexible Inverted Organic Solar Cells
by Hailong You, Junchi Zhang, Zeyulin Zhang, Chunfu Zhang, Zhenhua Lin, Jingjing Chang, Genquan Han, Jincheng Zhang, Gang Lu and Yue Hao
Energies 2017, 10(4), 494; https://doi.org/10.3390/en10040494 - 6 Apr 2017
Cited by 15 | Viewed by 5927
Abstract
High performance flexible inverted organic solar cells (OSCs) employing the low temperature cathode buffer bilayer combining the aqueous solution-processed ZnO and polyethylenimine ethoxylated (PEIE) are investigated based on Poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butryric acid methyl ester (P3HT:PC61BM) and Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexy)carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71-butyric acid methyl [...] Read more.
High performance flexible inverted organic solar cells (OSCs) employing the low temperature cathode buffer bilayer combining the aqueous solution-processed ZnO and polyethylenimine ethoxylated (PEIE) are investigated based on Poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butryric acid methyl ester (P3HT:PC61BM) and Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexy)carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71-butyric acid methyl ester (PTB-7:PC71BM) material systems. It is found that, compared with pure ZnO or PEIE cathode buffer layer (CBL), the proper combination of low-temperature processed ZnO and PEIE as the CBL enhanced the short circuit current density (JSC), resulting in better device performance. The increased JSC results from the enhanced electron collection ability from the active layer to the cathode. By using the ZnO/PEIE CBL, a power conversion efficiency (PCE) as high as 4.04% for the P3HT:PC61BM flexible device and a PCE as high as 8.12% for the PTB-7:PC71BM flexible device are achieved, which are higher than the control devices with the pure ZnO CBL or pure PEIE CBL. The flexible inverted OSC also shows a superior mechanical property and it can keep 92.9% of its initial performance after 1000 bending cycles with a radius of 0.8 cm. These results suggest that the combination of the low temperature aqueous solution processed ZnO and PEIE can be a promising cathode buffer bilayer for flexible inverted OSCs. Full article
Show Figures

Figure 1

Back to TopTop