Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = poly-beta-hydroxybutyrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3080 KiB  
Article
Bacterial Population Changes during the Degradation Process of a Lactate (LA)-Enriched Biodegradable Polymer in River Water: LA-Cluster Preferable Bacterial Consortium
by Ryosuke Kadoya, Hitomi Soga, Miki Matsuda, Michio Sato and Seiichi Taguchi
Polymers 2023, 15(20), 4111; https://doi.org/10.3390/polym15204111 - 17 Oct 2023
Cited by 5 | Viewed by 1724
Abstract
The lactate-based polyester poly[lactate (LA)-co-3-hydroxybutyrate (3HB)], termed LAHB, is a highly transparent and flexible bio-based polymeric material. There are many unknowns regarding its degradation process in riverine environments, especially the changes in bacterial flora that might result from its degradation and [...] Read more.
The lactate-based polyester poly[lactate (LA)-co-3-hydroxybutyrate (3HB)], termed LAHB, is a highly transparent and flexible bio-based polymeric material. There are many unknowns regarding its degradation process in riverine environments, especially the changes in bacterial flora that might result from its degradation and the identities of any LAHB-degrading bacteria. LAHB were immersed in the river water samples (A and B), and LAHB degradation was observed in terms of the weight change of the polymer and the microscopic changes on the polymer surfaces. A metagenomic analysis of microorganisms was conducted to determine the effect of LAHB degradation on the aquatic environment. The bacterial flora obtained from beta diversity analysis differed between the two river samples. The river A water sample showed the simultaneous degradation of LA and 3HB even though the copolymer was LA-enriched, suggesting preferable hydrolysis of the LA-enriched segments. In contrast, only 3HB degraded for the LAHB in the river B water sample. The linear discriminant analysis effect size (LEfSe) analysis revealed 14 bacteria that were significantly increased in the river A water sample during LAHB degradation, suggesting that these bacteria preferentially degraded and assimilated LA-clustering polymers. Our metagenomic analysis provides useful insights into the dynamic changes in microbial communities and LA-clustering polymer-degrading bacteria. Full article
(This article belongs to the Special Issue Preparation and Applications of Biodegradable Polymer Materials)
Show Figures

Figure 1

31 pages, 3113 KiB  
Article
Literature-Based Discovery to Elucidate the Biological Links between Resistant Hypertension and COVID-19
by David Kartchner, Kevin McCoy, Janhvi Dubey, Dongyu Zhang, Kevin Zheng, Rushda Umrani, James J. Kim and Cassie S. Mitchell
Biology 2023, 12(9), 1269; https://doi.org/10.3390/biology12091269 - 21 Sep 2023
Cited by 4 | Viewed by 3804
Abstract
Multiple studies have reported new or exacerbated persistent or resistant hypertension in patients previously infected with COVID-19. We used literature-based discovery to identify and prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-domain text mining of 33+ million PubMed articles within [...] Read more.
Multiple studies have reported new or exacerbated persistent or resistant hypertension in patients previously infected with COVID-19. We used literature-based discovery to identify and prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-domain text mining of 33+ million PubMed articles within a comprehensive knowledge graph was performed using SemNet 2.0. Unsupervised rank aggregation determined which concepts were most relevant utilizing the normalized HeteSim score. A series of simulations identified concepts directly related to COVID-19 and resistant hypertension or connected via one of three renin–angiotensin–aldosterone system hub nodes (mineralocorticoid receptor, epithelial sodium channel, angiotensin I receptor). The top-ranking concepts relating COVID-19 to resistant hypertension included: cGMP-dependent protein kinase II, MAP3K1, haspin, ral guanine nucleotide exchange factor, N-(3-Oxododecanoyl)-L-homoserine lactone, aspartic endopeptidases, metabotropic glutamate receptors, choline-phosphate cytidylyltransferase, protein tyrosine phosphatase, tat genes, MAP3K10, uridine kinase, dicer enzyme, CMD1B, USP17L2, FLNA, exportin 5, somatotropin releasing hormone, beta-melanocyte stimulating hormone, pegylated leptin, beta-lipoprotein, corticotropin, growth hormone-releasing peptide 2, pro-opiomelanocortin, alpha-melanocyte stimulating hormone, prolactin, thyroid hormone, poly-beta-hydroxybutyrate depolymerase, CR 1392, BCR-ABL fusion gene, high density lipoprotein sphingomyelin, pregnancy-associated murine protein 1, recQ4 helicase, immunoglobulin heavy chain variable domain, aglycotransferrin, host cell factor C1, ATP6V0D1, imipramine demethylase, TRIM40, H3C2 gene, COL1A1+COL1A2 gene, QARS gene, VPS54, TPM2, MPST, EXOSC2, ribosomal protein S10, TAP-144, gonadotropins, human gonadotropin releasing hormone 1, beta-lipotropin, octreotide, salmon calcitonin, des-n-octanoyl ghrelin, liraglutide, gastrins. Concepts were mapped to six physiological themes: altered endocrine function, 23.1%; inflammation or cytokine storm, 21.3%; lipid metabolism and atherosclerosis, 17.6%; sympathetic input to blood pressure regulation, 16.7%; altered entry of COVID-19 virus, 14.8%; and unknown, 6.5%. Full article
(This article belongs to the Special Issue Machine Learning Applications in Biology)
Show Figures

Figure 1

17 pages, 5312 KiB  
Article
Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications
by Ozlem Ipek Kalaoglu-Altan, Havva Baskan, Timo Meireman, Pooja Basnett, Bahareh Azimi, Alessandra Fusco, Niccola Funel, Giovanna Donnarumma, Andrea Lazzeri, Ipsita Roy, Serena Danti and Karen De Clerck
Materials 2021, 14(17), 4907; https://doi.org/10.3390/ma14174907 - 28 Aug 2021
Cited by 19 | Viewed by 4099
Abstract
Wound dressings are high performance and high value products which can improve the regeneration of damaged skin. In these products, bioresorption and biocompatibility play a key role. The aim of this study is to provide progress in this area via nanofabrication and antimicrobial [...] Read more.
Wound dressings are high performance and high value products which can improve the regeneration of damaged skin. In these products, bioresorption and biocompatibility play a key role. The aim of this study is to provide progress in this area via nanofabrication and antimicrobial natural materials. Polyhydroxyalkanoates (PHAs) are a bio-based family of polymers that possess high biocompatibility and skin regenerative properties. In this study, a blend of poly(3-hydroxybutyrate) (P(3HB)) and poly(3-hydroxyoctanoate-co-3-hydroxy decanoate) (P(3HO-co-3HD)) was electrospun into P(3HB))/P(3HO-co-3HD) nanofibers to obtain materials with a high surface area and good handling performance. The nanofibers were then modified with silver nanoparticles (AgNPs) via the dip-coating method. The silver-containing nanofiber meshes showed good cytocompatibility and interesting immunomodulatory properties in vitro, together with the capability of stimulating the human beta defensin 2 and cytokeratin expression in human keratinocytes (HaCaT cells), which makes them promising materials for wound dressing applications. Full article
(This article belongs to the Special Issue Low-Impact Polymer Nanofibers and Applications)
Show Figures

Figure 1

15 pages, 4075 KiB  
Article
Immunomodulatory Activity of Electrospun Polyhydroxyalkanoate Fiber Scaffolds Incorporating Olive Leaf Extract
by Jose Gustavo De la Ossa, Alessandra Fusco, Bahareh Azimi, Jasmine Esposito Salsano, Maria Digiacomo, Maria-Beatrice Coltelli, Karen De Clerck, Ipsita Roy, Marco Macchia, Andrea Lazzeri, Giovanna Donnarumma, Serena Danti and Rossella Di Stefano
Appl. Sci. 2021, 11(9), 4006; https://doi.org/10.3390/app11094006 - 28 Apr 2021
Cited by 19 | Viewed by 3893
Abstract
Olive tree is a well-known source of polyphenols. We prepared an olive leaf extract (OLE) and characterized it via high performance liquid chromatography (HPLC) analysis. OLE was blended with different polyhydroxyalkanoates (PHAs), namely, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) and polyhydroxybutyrate/poly(hydroxyoctanoate-co-hydroxydecanoate) (PHB/PHOHD), to produce fiber meshes via [...] Read more.
Olive tree is a well-known source of polyphenols. We prepared an olive leaf extract (OLE) and characterized it via high performance liquid chromatography (HPLC) analysis. OLE was blended with different polyhydroxyalkanoates (PHAs), namely, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) and polyhydroxybutyrate/poly(hydroxyoctanoate-co-hydroxydecanoate) (PHB/PHOHD), to produce fiber meshes via electrospinning: OLE/PHBV and OLE/ (PHB/PHOHD), respectively. An 80–90% (w/w%) release of the main polyphenols from the OLE/PHA fibers occurred in 24 h, with a burst release in the first 30 min. OLE and the produced fiber meshes were assayed using human dermal keratinocytes (HaCaT cells) to evaluate the expression of a panel of cytokines involved in the inflammatory process and innate immune response, such as the antimicrobial peptide human beta defensin 2 (HBD-2). Fibers containing OLE were able to decrease the expression of the pro-inflammatory cytokines at 6 h up to 24 h. All the PHA fibers allowed an early downregulation of the pro-inflammatory cytokines in 6 h, which is suggestive of a strong anti-inflammatory activity exerted by PHA fibers. Differently from pure OLE, PHB/PHOHD fibers (both with and without OLE) upregulated the expression of HBD-2. Our results showed that PHA fiber meshes are suitable in decreasing pro-inflammatory cytokines and the incorporation of OLE may enable indirect antibacterial properties, which is essential in wound healing and tissue regeneration. Full article
(This article belongs to the Special Issue Natural Compounds with Antimicrobial and Immunomodulatory Activity)
Show Figures

Figure 1

11 pages, 6110 KiB  
Article
Probing the Kinetic Anabolism of Poly-Beta-Hydroxybutyrate in Cupriavidus necator H16 Using Single-Cell Raman Spectroscopy
by Zhanhua Tao, Lixin Peng, Pengfei Zhang, Yong-Qing Li and Guiwen Wang
Sensors 2016, 16(8), 1257; https://doi.org/10.3390/s16081257 - 8 Aug 2016
Cited by 13 | Viewed by 7692
Abstract
Poly-beta-hydroxybutyrate (PHB) can be formed in large amounts in Cupriavidus necator and is important for the industrial production of biodegradable plastics. In this investigation, laser tweezers Raman spectroscopy (LTRS) was used to characterize dynamic changes in PHB content—as well as in the contents [...] Read more.
Poly-beta-hydroxybutyrate (PHB) can be formed in large amounts in Cupriavidus necator and is important for the industrial production of biodegradable plastics. In this investigation, laser tweezers Raman spectroscopy (LTRS) was used to characterize dynamic changes in PHB content—as well as in the contents of other common biomolecule—in C. necator during batch growth at both the population and single-cell levels. PHB accumulation began in the early stages of bacterial growth, and the maximum PHB production rate occurred in the early and middle exponential phases. The active biosynthesis of DNA, RNA, and proteins occurred in the lag and early exponential phases, whereas the levels of these molecules decreased continuously during the remaining fermentation process until the minimum values were reached. The PHB content inside single cells was relatively homogenous in the middle stage of fermentation; during the late growth stage, the variation in PHB levels between cells increased. In addition, bacterial cells in various growth phases could be clearly discriminated when principle component analysis was performed on the spectral data. These results suggest that LTRS is a valuable single-cell analysis tool that can provide more comprehensive information about the physiological state of a growing microbial population. Full article
(This article belongs to the Special Issue Applications of Raman Spectroscopy in Biosensors)
Show Figures

Graphical abstract

Back to TopTop