Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = poly(lactic acid), halloysite nanotubes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4935 KiB  
Article
Combined Effect of Poly(lactic acid)-Grafted Maleic Anhydride Compatibilizer and Halloysite Nanotubes on Morphology and Properties of Polylactide/Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Blends
by Nawel Mokrane, Mustapha Kaci, José-Marie Lopez-Cuesta and Nadjet Dehouche
Materials 2023, 16(19), 6438; https://doi.org/10.3390/ma16196438 - 27 Sep 2023
Cited by 6 | Viewed by 2036
Abstract
Given the global challenge of plastic pollution, the development of new bioplastics to replace conventional polymers has become a priority. It is therefore essential to achieve a balance in the performances of biopolymers in order to improve their commercial availability. In this topic, [...] Read more.
Given the global challenge of plastic pollution, the development of new bioplastics to replace conventional polymers has become a priority. It is therefore essential to achieve a balance in the performances of biopolymers in order to improve their commercial availability. In this topic, this study aims to investigate the morphology and properties of poly(lactic acid) (PLA)/ poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) (at a ratio of 75/25 (w/w)) blends reinforced with halloysite nanotubes (HNTs) and compatibilized with poly(lactic acid)-grafted maleic anhydride (PLA-g-MA). HNTs and PLA-g-MA were added to the polymer blend at 5 and 10 wt.%, respectively, and everything was processed via melt compounding. A scanning electron microscopy (SEM) analysis shows that HNTs are preferentially localized in PHBHHx nodules rather than in the PLA matrix due to its higher wettability. When HNTs are combined with PLA-g-MA, a finer and a more homogeneous morphology is observed, resulting in a reduction in the size of PHBHHx nodules. The presence of HNTs in the polymer blend improves the impact strength from 12.7 to 20.9 kJ/mm2. Further, with the addition of PLA-g-MA to PLA/PHBHHX/HNT nanocomposites, the tensile strength, elongation at break, and impact strength all improve significantly, rising from roughly 42 MPa, 14.5%, and 20.9 kJ/mm2 to nearly 46 MPa, 18.2%, and 31.2 kJ/mm2, respectively. This is consistent with the data obtained via dynamic mechanical analysis (DMA). The thermal stability of the compatibilized blend reinforced with HNTs is also improved compared to the non-compatibilized one. Overall, this study highlights the effectiveness of combining HNTs and PLA-g-AM for the properties enhancement of PLA/PHBHHx blends. Full article
Show Figures

Figure 1

16 pages, 4490 KiB  
Article
Process Optimization for the 3D Printing of PLA and HNT Composites with Arburg Plastic Freeforming
by Leonardo G. Engler, Janaina S. Crespo, Noel M. Gately, Ian Major and Declan M. Devine
J. Compos. Sci. 2022, 6(10), 309; https://doi.org/10.3390/jcs6100309 - 12 Oct 2022
Cited by 11 | Viewed by 2867
Abstract
The industrial use of additive manufacturing continues to rapidly increase as new technology developments become available. The Arburg plastic freeforming (APF) process is designed to utilize standard polymeric granules in order to print parts with properties similar to those of molded parts. Despite [...] Read more.
The industrial use of additive manufacturing continues to rapidly increase as new technology developments become available. The Arburg plastic freeforming (APF) process is designed to utilize standard polymeric granules in order to print parts with properties similar to those of molded parts. Despite the emerging industrial importance of APF, the current body of knowledge regarding this technology is still very limited, especially in the field of biodegradable polymer composites. To this end, poly(lactic acid) (PLA) was reinforced with halloysite nanotubes (HNTs) by hot melt extrusion. The PLA/HNT (0–10 wt%.) composites were analyzed in terms of their rheology, morphology, and thermal and mechanical properties. A study of the processing properties of these composites in the context of APF was performed to ensure the consistency of 3D-printed, high-quality components. The optimized machine settings were used to evaluate the tensile properties of specimens printed with different axis orientations (XY and XZ) and deposition angles (0 and 45°). Specimens printed with an XY orientation and deposition angle starting at 0° resulted in the highest mechanical properties. In this study, the use of PLA/HNT composites in an APF process was reported for the first time, and the current methodology achieved satisfactory results in terms of the 3D printing and evaluation of successful PLA/HNT composites to be used as feedstock in an APF process. Full article
(This article belongs to the Special Issue 3D Printing Composites)
Show Figures

Figure 1

13 pages, 3403 KiB  
Article
Development and Characterization of Polyester and Acrylate-Based Composites with Hydroxyapatite and Halloysite Nanotubes for Medical Applications
by Elena Torres, Ivan Dominguez-Candela, Sergio Castello-Palacios, Anna Vallés-Lluch and Vicent Fombuena
Polymers 2020, 12(8), 1703; https://doi.org/10.3390/polym12081703 - 29 Jul 2020
Cited by 21 | Viewed by 3929
Abstract
We aimed to study the distribution of hydroxyapatite (HA) and halloysite nanotubes (HNTs) as fillers and their influence on the hydrophobic character of conventional polymers used in the biomedical field. The hydrophobic polyester poly (ε-caprolactone) (PCL) was blended with its more hydrophilic counterpart [...] Read more.
We aimed to study the distribution of hydroxyapatite (HA) and halloysite nanotubes (HNTs) as fillers and their influence on the hydrophobic character of conventional polymers used in the biomedical field. The hydrophobic polyester poly (ε-caprolactone) (PCL) was blended with its more hydrophilic counterpart poly (lactic acid) (PLA) and the hydrophilic acrylate poly (2-hydroxyethyl methacrylate) (PHEMA) was analogously compared to poly (ethyl methacrylate) (PEMA) and its copolymer. The addition of HA and HNTs clearly improve surface wettability in neat samples (PCL and PHEMA), but not that of the corresponding binary blends. Energy-dispersive X-ray spectroscopy mapping analyses show a homogenous distribution of HA with appropriate Ca/P ratios between 1.3 and 2, even on samples that were incubated for seven days in simulated body fluid, with the exception of PHEMA, which is excessively hydrophilic to promote the deposition of salts on its surface. HNTs promote large aggregates on more hydrophilic polymers. The degradation process of the biodegradable polyester PCL blended with PLA, and the addition of HA and HNTs, provide hydrophilic units and decrease the overall crystallinity of PCL. Consequently, after 12 weeks of incubation in phosphate buffered saline the mass loss increases up to 48% and mechanical properties decrease above 60% compared with the PCL/PLA blend. Full article
Show Figures

Graphical abstract

21 pages, 10381 KiB  
Article
Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes
by Sergi Montava-Jorda, Victor Chacon, Diego Lascano, Lourdes Sanchez-Nacher and Nestor Montanes
Polymers 2019, 11(8), 1314; https://doi.org/10.3390/polym11081314 - 6 Aug 2019
Cited by 26 | Viewed by 4118
Abstract
This work reports the potential of poly(lactic acid)—PLA composites with different halloysite nanotube (HNTs) loading (3, 6 and 9 wt%) for further uses in advanced applications as HNTs could be used as carriers for active compounds for medicine, packaging and other sectors. This [...] Read more.
This work reports the potential of poly(lactic acid)—PLA composites with different halloysite nanotube (HNTs) loading (3, 6 and 9 wt%) for further uses in advanced applications as HNTs could be used as carriers for active compounds for medicine, packaging and other sectors. This work focuses on the effect of HNTs on mechanical, thermal, thermomechanical and degradation of PLA composites with HNTs. These composites can be manufactured by conventional extrusion-compounding followed by injection molding. The obtained results indicate a slight decrease in tensile and flexural strength as well as in elongation at break, both properties related to material cohesion. On the contrary, the stiffness increases with the HNTs content. The tensile strength and modulus change from 64.6 MPa/2.1 GPa (neat PLA) to 57.7/2.3 GPa MPa for the composite with 9 wt% HNTs. The elongation at break decreases from 6.1% (neat PLA) down to a half for composites with 9 wt% HNTs. Regarding flexural properties, the flexural strength and modulus change from 116.1 MPa and 3.6 GPa respectively for neat PLA to values of 107.6 MPa and 3.9 GPa for the composite with 9 wt% HNTs. HNTs do not affect the glass transition temperature with invariable values of about 64 °C, or the melt peak temperature, while they move the cold crystallization process towards lower values, from 112.4 °C for neat PLA down to 105.4 °C for the composite containing 9 wt% HNTs. The water uptake has been assessed to study the influence of HNTs on the water saturation. HNTs contribute to increased hydrophilicity with a change in the asymptotic water uptake from 0.95% (neat PLA) up to 1.67% (PLA with 9 wt % HNTs) and the effect of HNTs on disintegration in controlled compost soil has been carried out to see the influence of HNTs on this process, which is a slight delay on it. These PLA-HNT composites show good balanced properties and could represent an interesting solution to develop active materials. Full article
Show Figures

Graphical abstract

21 pages, 7211 KiB  
Article
Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites
by Edgar Castro-Aguirre, Rafael Auras, Susan Selke, Maria Rubino and Terence Marsh
Polymers 2018, 10(2), 202; https://doi.org/10.3390/polym10020202 - 17 Feb 2018
Cited by 82 | Viewed by 8851
Abstract
Poly(lactic acid) (PLA), a well-known biodegradable and compostable polymer, was used in this study as a model system to determine if the addition of nanoclays affects its biodegradation in simulated composting conditions and whether the nanoclays impact the microbial population in a compost [...] Read more.
Poly(lactic acid) (PLA), a well-known biodegradable and compostable polymer, was used in this study as a model system to determine if the addition of nanoclays affects its biodegradation in simulated composting conditions and whether the nanoclays impact the microbial population in a compost environment. Three different nanoclays were studied due to their different surface characteristics but similar chemistry: organo-modified montmorillonite (OMMT), Halloysite nanotubes (HNT), and Laponite® RD (LRD). Additionally, the organo-modifier of MMT, methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium (QAC), was studied. PLA and PLA bio-nanocomposite (BNC) films were produced, characterized, and used for biodegradation evaluation with an in-house built direct measurement respirometer (DMR) following the analysis of evolved CO2 approach. A biofilm formation essay and scanning electron microscopy were used to evaluate microbial attachment on the surface of PLA and BNCs. The results obtained from four different biodegradation tests with PLA and its BNCs showed a significantly higher mineralization of the films containing nanoclay in comparison to the pristine PLA during the first three to four weeks of testing, mainly attributed to the reduction in the PLA lag time. The effect of the nanoclays on the initial molecular weight during processing played a crucial role in the evolution of CO2. PLA-LRD5 had the greatest microbial attachment on the surface as confirmed by the biofilm test and the SEM micrographs, while PLA-QAC0.4 had the lowest biofilm formation that may be attributed to the inhibitory effect also found during the biodegradation test when the QAC was tested by itself. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

15 pages, 825 KiB  
Article
Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid)
by Xuetao Shi, Guangcheng Zhang, Thanh Vu Phuong and Andrea Lazzeri
Molecules 2015, 20(1), 1579-1593; https://doi.org/10.3390/molecules20011579 - 19 Jan 2015
Cited by 123 | Viewed by 10474
Abstract
The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK [...] Read more.
The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates) were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid) (PDLA) acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA) indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young’s modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

Back to TopTop