Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = poly(hexamethylene biguanide) hydrochloride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1623 KB  
Article
Effect of Pre-Sowing Seed Stimulation on Maize Seedling Vigour
by Paulina Pipiak, Katarzyna Sieczyńska, Dorota Gendaszewska and Monika Skwarek-Fadecka
Int. J. Mol. Sci. 2024, 25(22), 12480; https://doi.org/10.3390/ijms252212480 - 20 Nov 2024
Cited by 2 | Viewed by 2088
Abstract
The aim of this study was to investigate the effects of treating maize (Zea mays L.) seeds with fish collagen hydrolysate (FC) and keratin (KE) derived from animal waste by-products of leather and meat production, as well as poly(hexamethylene biguanide) hydrochloride (P) [...] Read more.
The aim of this study was to investigate the effects of treating maize (Zea mays L.) seeds with fish collagen hydrolysate (FC) and keratin (KE) derived from animal waste by-products of leather and meat production, as well as poly(hexamethylene biguanide) hydrochloride (P) and bentonite (B). This research is in line with the search for new, environmentally friendly methods to increase yields of industrial crops in a way that is compatible with sustainable development. The effect of the binders used was investigated by analysing the grown maize seedlings by determining changes in parameters of chlorophyll fluorescence, photosynthetic pigments, elemental composition and FTIR analysis on maize shoots. The results indicated a slightly higher fresh weight (FW) of shoots in plants treated with fish collagen, PHMB and bentonite (FC+P+B) and FW of roots in plants treated with keratin, PHMB and bentonite (KE+P+B). Unexpectedly, the FW and dry weight (DW) of both roots and shoots of all bentonite-treated plants were significantly higher than the corresponding non-bentonite-treated groups. In addition, changes in chlorophyll-a fluorescence were observed for the keratin, PHMB and bentonite variants. This study showed that the proposed materials could be promising seed pelleting agents to improve seed growth and yield. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 7737 KB  
Article
Preparation and Properties of Antibacterial Silk Fibroin Scaffolds
by Peng Pan, Cheng Hu, Ahui Liang, Xueping Liu, Mengqi Fang, Shanlong Yang, Yadong Zhang and Mingzhong Li
Polymers 2023, 15(23), 4581; https://doi.org/10.3390/polym15234581 - 30 Nov 2023
Cited by 7 | Viewed by 2714
Abstract
The development of a wound dressing with both antibacterial and healing-guiding functions is a major concern in the treatment of open and infected wounds. In this study, poly(hexamethylene biguanide) hydrochloride (PHMB) was loaded into a 3D silk fibroin (SF) scaffold based on electrostatic [...] Read more.
The development of a wound dressing with both antibacterial and healing-guiding functions is a major concern in the treatment of open and infected wounds. In this study, poly(hexamethylene biguanide) hydrochloride (PHMB) was loaded into a 3D silk fibroin (SF) scaffold based on electrostatic interactions between PHMB and SF, and PHMB/SF hybrid scaffolds were prepared via freeze-drying. The effects of the PHMB/SF ratio on the antibacterial activity and cytocompatibility of the hybrid scaffold were investigated. The results of an agar disc diffusion test and a bacteriostasis rate examination showed that when the mass ratio of PHMB/SF was greater than 1/100, the scaffold exhibited obvious antibacterial activity against E. coli and S. aureus. L-929 cells were encapsulated in the PHMB/SF scaffolds and cultured in vitro. SEM, laser scanning confocal microscopy, and CCK-8 assay results demonstrated that hybrid scaffolds with a PHMB/SF ratio of less than 2/100 significantly promoted cell adhesion, spreading, and proliferation. In conclusion, a hybrid scaffold with a PHMB/SF ratio of approximately 2/100 not only effectively inhibited bacterial reproduction but also showed good cytocompatibility and is expected to be usable as a functional antibacterial dressing for wound repair. Full article
(This article belongs to the Special Issue Advanced Polymeric Scaffolds Applied in the Biomedical Field)
Show Figures

Graphical abstract

5 pages, 1263 KB  
Communication
Development of Antiviral CVC (Chief Value Cotton) Fabric
by Wen-Yi Wang, Sui-Lung Yim, Chun-Ho Wong and Chi-Wai Kan
Polymers 2021, 13(16), 2601; https://doi.org/10.3390/polym13162601 - 5 Aug 2021
Cited by 11 | Viewed by 4084
Abstract
The outbreak of COVID-19 has already generated a huge societal, economic and political losses worldwide. The present study aims to investigate the antiviral activity of Poly(hexamethylene biguanide) hydrochloride (PHMB) treated fabric against COVID-19 by using the surrogate Feline coronavirus. The antiviral analysis indicated [...] Read more.
The outbreak of COVID-19 has already generated a huge societal, economic and political losses worldwide. The present study aims to investigate the antiviral activity of Poly(hexamethylene biguanide) hydrochloride (PHMB) treated fabric against COVID-19 by using the surrogate Feline coronavirus. The antiviral analysis indicated that up to 94% of coronavirus was killed after contacting the CVC fabric treated with PHMB for 2 h, which suggests that PHMB treated fabric could be used for developing protective clothing and beddings with antiviral activity against coronavirus and can play a role in fighting the transmission of COVID-19 in the high-risk places. Full article
(This article belongs to the Special Issue Develop Antimicrobial Polymer Textiles for Medical Applications)
Show Figures

Graphical abstract

7 pages, 1188 KB  
Communication
Study on the Development of Antiviral Spandex Fabric Coated with Poly(Hexamethylene Biguanide) Hydrochloride (PHMB)
by Wen-Yi Wang, Sui-Lung Yim, Chun-Ho Wong and Chi-Wai Kan
Polymers 2021, 13(13), 2122; https://doi.org/10.3390/polym13132122 - 28 Jun 2021
Cited by 21 | Viewed by 4303
Abstract
The spread of COVID-19 has brought about huge losses around the world. This study aims to investigate the applicability of PHMB used for developing antiviral spandex clothing against coronavirus. PHMB was qualitatively determined on the surface of spandex fabrics by using BPB. The [...] Read more.
The spread of COVID-19 has brought about huge losses around the world. This study aims to investigate the applicability of PHMB used for developing antiviral spandex clothing against coronavirus. PHMB was qualitatively determined on the surface of spandex fabrics by using BPB. The antiviral analysis shows that the PHMB-treated spandex fabric can kill 99% of the coronavirus within 2 h of contact, which suggests that the spandex fabric treated with PHMB could be used for developing antiviral clothing against coronaviruses for containing the transmission of COVID-19 in high-risk places. Furthermore, PHMB-treated spandex fabrics were shown excellent antibacterial activity against gram-positive S. aureus and gram-negative K. pneumoniae. The hand feel properties of Spandex fabric were not significantly affected by the PHMB coating in addition to the wrinkle recovery, which was obviously improved after PHMB coating. Full article
(This article belongs to the Collection Polymeric Materials for COVID-19 Prevention and Treatment)
Show Figures

Graphical abstract

10 pages, 2046 KB  
Article
Porous Poly(Hexamethylene Biguanide) Hydrochloride Loaded Silk Fibroin Sponges with Antibacterial Function
by Ahui Liang, Min Zhang, Hong Luo, Longxing Niu, Yanfei Feng and Mingzhong Li
Materials 2020, 13(2), 285; https://doi.org/10.3390/ma13020285 - 8 Jan 2020
Cited by 24 | Viewed by 4415
Abstract
In order to endue silk fibroin (SF) sponges with antibacterial function, positively charged poly(hexamethylene biguanide) hydrochloride (PHMB) was incorporated in SF through electrostatic interaction and by freeze-drying technique. The influence of PHMB on the structure and antibacterial activities of SF sponges was investigated. [...] Read more.
In order to endue silk fibroin (SF) sponges with antibacterial function, positively charged poly(hexamethylene biguanide) hydrochloride (PHMB) was incorporated in SF through electrostatic interaction and by freeze-drying technique. The influence of PHMB on the structure and antibacterial activities of SF sponges was investigated. The zeta potential of SF was increased significantly when PHMB was incorporated in SF. The pores with size from 80 to 300 µm and the microscale holes in the pore walls within PHMB-loaded SF sponges provided the channels of PHMB release. The PHMB loaded in the porous sponges showed continuous and slow release for up to 20 days. Effective growth inhibition of both Escherichia coli and Staphylococcus aureus was achieved when the mass ratio of PHMB/SF was higher than 2/100. These results suggest that the porous PHMB/SF sponges have the potential to be used as a novel wound dressing for open skin wounds. Full article
(This article belongs to the Special Issue Silk-Based Biomaterials)
Show Figures

Figure 1

24 pages, 521 KB  
Article
Study of Epigenetic Properties of Poly(HexaMethylene Biguanide) Hydrochloride (PHMB)
by Edmond E. Creppy, Aboudoulatif Diallo, Serge Moukha, Christophe Eklu-Gadegbeku and Daniel Cros
Int. J. Environ. Res. Public Health 2014, 11(8), 8069-8092; https://doi.org/10.3390/ijerph110808069 - 8 Aug 2014
Cited by 33 | Viewed by 8814
Abstract
Poly(HexaMethylene Biguanide) hydrochloride (PHMB) CAS No. [32289-58-0] is a particularly effective member of the biguanides antiseptic chemical group, and has been in use since the early fifties in numerous applications. It has been proposed that PHMB be classified as a category 3 carcinogen [...] Read more.
Poly(HexaMethylene Biguanide) hydrochloride (PHMB) CAS No. [32289-58-0] is a particularly effective member of the biguanides antiseptic chemical group, and has been in use since the early fifties in numerous applications. It has been proposed that PHMB be classified as a category 3 carcinogen although PHMB is not genotoxic. It has been hypothesized that PHMB may have epigenetic properties effects, including non-genotoxic modifications of DNA bases, DNA methylation and mitogenic cytokine production. These properties have been assessed in vitro using 3 cell types: Caco-2 cells (from a human colon adenocarcinoma) with a non-functional p53 gene. (∆p53: mut p53), N2-A (Neuro-2A cells, mouse neural cells), the brain being a possible target organ in rodents and HepG2 cells (human hepatocellular carcinoma) with functional p53 gene. From the concentration 1 µg/mL up to 20 µg/mL of PHMB, no effect was observed, either growth stimulation or inhibition. Viability testing using neutral red led to an IC 50 of 20–25 µg/mL after treatment with PHMB for 3 h, whereas the MTT test led to IC50 values of 80 µg/mL, 160 µg/mL and 160 µg/mL respectively for HepG2 cells, Neuro-2A cells and Caco-2 cells. PHMB does not induce significant oxidative stress (production of MDA or lipoperoxidation, nor does it induce hydroxylation of DNA (8-OH-dG) and/or its hypermethylation (m5dC), the latter being strongly implicated in DNA replication and regulation and cell division. PHMB does not induce significant production of mitogenic cytokines such as TNF-α (tumor necrosis factor), interleukins (IL-1 alpha), and the transcription factor nuclear factor kappa B (NF-κB) which can cause either apoptosis or stimulate the growth of transformed cells or tumors. Instead, from concentrations of 20 to 100 µg/mL, PHMB kills cells of all types in less than 3 h. The expression of genes involved in the mechanisms of cell death induced by PHMB, including p53, the pro apoptotic gene bax and others, the anti-apoptotic bcl-2 and caspase-3 has been evaluated by RT-PCR. Finally, the status of GAP-junctions (GJIC) in the presence of PHMB has been determined and appeared to not be significantly affected. Taken together the data show that in vitro PHMB does not exhibit clear and remarkable epigenetic properties except a slight increase of some cytokines and transcription factor at higher concentrations at which cell lysis occurs rapidly. Full article
Show Figures

Figure 1

14 pages, 629 KB  
Communication
Physical and Chemical Characterization of Poly(hexamethylene biguanide) Hydrochloride
by Gustavo F. De Paula, Germano I. Netto and Luiz Henrique C. Mattoso
Polymers 2011, 3(2), 928-941; https://doi.org/10.3390/polym3020928 - 1 Jun 2011
Cited by 90 | Viewed by 23023
Abstract
We present the characterization of commercially available Poly(hexamethylene biguanide) hydrochloride (PHMB), a polymer with biocidal activity and several interesting properties that make this material suitable as a building block for supramolecular chemistry and “smart” materials. We studied polymer structure in water solution by [...] Read more.
We present the characterization of commercially available Poly(hexamethylene biguanide) hydrochloride (PHMB), a polymer with biocidal activity and several interesting properties that make this material suitable as a building block for supramolecular chemistry and “smart” materials. We studied polymer structure in water solution by dynamic light scattering, surface tension and capacitance spectroscopy. It shows typical surfactant behavior due to amphiphilic structure and low molecular weight. Spectroscopic (UV/Vis, FT-NIR) and thermal characterization (differential scanning calorimetry, DSC, and thermogravimetric analysis, TGA) were performed to give additional insight into the material structure in solution and solid state. These results can be the foundation for more detailed investigations on usefulness of PHMB in new complex materials and devices. Full article
(This article belongs to the Special Issue Water-Soluble Polymers)
Show Figures

Back to TopTop