Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = plasma wire deposition welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 29170 KiB  
Article
Influence of Printing Parameters on the Morphological Characteristics of Plasma Directed Energy-Deposited Stainless Steel
by Luis Segovia-Guerrero, Antonio José Gil-Mena, Nuria Baladés, David L. Sales, Carlota Fonollá, María de la Mata and María de Nicolás-Morillas
J. Manuf. Mater. Process. 2024, 8(5), 233; https://doi.org/10.3390/jmmp8050233 - 15 Oct 2024
Cited by 2 | Viewed by 2006
Abstract
This study investigated the influence of printing parameters and strategies on the morphological characteristics of austenitic stainless steel beads deposited on carbon steel substrates, using plasma directed energy deposition (DED). The experimental setup varied the welding current, wire feed speed, and torch travel [...] Read more.
This study investigated the influence of printing parameters and strategies on the morphological characteristics of austenitic stainless steel beads deposited on carbon steel substrates, using plasma directed energy deposition (DED). The experimental setup varied the welding current, wire feed speed, and torch travel speed, and we analyzed three printing strategies: simple-linear, overlapping, and oscillating. Moreover, advanced 3D scanning and computational analysis were used to assess the key morphological features, including bead width and height. The results showed that the computational model developed by using parabolic assumptions accurately predicted the geometric outcomes of the overlapping beads. The oscillating printing strategy was the one that showed improved morphological uniformity and bead substrate wettability, so these features were used for multi-layer component manufacturing. The use of equivalent wavelength–amplitude values resulted in maximum combinations of bead height and width. Moreover, cost-effective carbon steel substrates were feasibly used in microstructural and elemental analyses, with the latter ones confirming the alignment of the bead composition with the wire-fed material. Overall, this study provides practical insights for optimizing plasma DED processes, thus enhancing the efficiency and quality of metal component manufacturing. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

31 pages, 19299 KiB  
Article
Effect of Exothermic Additions in Core Filler on Arc Stability and Microstructure during Self-Shielded, Flux-Cored Arc Welding
by Vasyl Lozynskyi, Bohdan Trembach, Egidijus Katinas, Kostiantyn Sadovyi, Michal Krbata, Oleksii Balenko, Ihor Krasnoshapka, Olena Rebrova, Sergey Knyazev, Oleksii Kabatskyi, Hanna Kniazieva and Liubomyr Ropyak
Crystals 2024, 14(4), 335; https://doi.org/10.3390/cryst14040335 - 31 Mar 2024
Cited by 15 | Viewed by 2205
Abstract
In the conditions of an energy crisis, an important issue is the increase in energy efficiency and productivity of welding and hardfacing processes. The article substantiates the perspective of using exothermic additives introduced into core filler for flux-cored wire arc welding processes as [...] Read more.
In the conditions of an energy crisis, an important issue is the increase in energy efficiency and productivity of welding and hardfacing processes. The article substantiates the perspective of using exothermic additives introduced into core filler for flux-cored wire arc welding processes as a relatively cheap additional heat source, reducing energy consumption when melting filler materials, and increasing the deposition rate. The mixture design (MD) was selected as the design method to optimize the average values of current and voltage, as well as arc stability parameters depending on core filler composition. This article studies the influence of the introduction of exothermic addition (EA), as well as the ratios CuO/C and CuO/Al on arc stability for the FCAW S process. Parameters characterizing arc stability were determined using an oscillograph, and from the obtained oscillograms, an analysis was conducted on arc voltage and welding current signals during flux-cored arc welding. It was determined that various methods can be used to evaluate arc stability, which can be divided into two groups: graphical (current and voltage cyclograms, box plots with frequency histograms, ellipse parameters plotted on current, and voltage cyclograms) and statistical (standard variation and coefficients of variation for welding current and arc voltage). In this paper, a comprehensive evaluation of arc stability depending on the composition of the cored wire filler was carried out. It was determined that the most stable current parameters were observed for the flux-cored wire electrode with an average exothermic addition content at the level of EA = 26.5–28.58 wt.% and a high carbon content (low values of CuO/C = 3.75). Conversely, the lowest values of arc stability (CV(U) and Std(U)) were observed during hardfacing with a flux-cored wire electrode with a high CuO/Al ratio ≥ 4.5 and a content of exothermic addition in the core filler below the average EA < 29 wt.%. Mathematical models of mean values, standard deviation, coefficient of variation for welding current, and arc voltage were developed. The results indicated that the response surface prediction models had good accuracy and prediction ability. The developed mathematical models showed that the ratio of oxidizing agent to reducing agent in the composition of exothermic addition (CuO/Al) had the greatest influence on the welding current and arc voltage characteristics under investigation. The percentage of exothermic mixture in the core filler (EA) only affected the average welding current (Iaw) and the average arc voltage (Uaw). The graphite content expressed through the CuO/C ratio had a significant impact on welding current parameters as well as the coefficient of variation of arc voltage (CV(U)). Two welding parameters were selected for optimization: the mean welding current (Iaw) and the standard deviation of arc voltage (Std(U)). The best arc stability when using exothermic addition CuO-Al in the core filler was observed at CuO/Al = 3.6–3.9, CuO/C = 3.5–4.26, and at an average EA content of 29–38 wt.%. The significant influence of the CuO/Al and CuO/C ratios on arc voltage parameters can also be explained by their impact on the elemental composition of the welding arc (copper, cupric oxide (CuO), and Al2O3). The more complete this reaction, the higher the amount of easily vaporized copper (Cu) in the arc plasma, enhancing arc stability. The influence of core filler composition on the microstructure of deposited metal of the Fe-Cr-Cu-Ti alloy system was investigated. Full article
Show Figures

Figure 1

20 pages, 2205 KiB  
Review
Wire Arc Additive Manufacturing (WAAM) for Aluminum-Lithium Alloys: A Review
by Paula Rodríguez-González, Elisa María Ruiz-Navas and Elena Gordo
Materials 2023, 16(4), 1375; https://doi.org/10.3390/ma16041375 - 6 Feb 2023
Cited by 23 | Viewed by 7884
Abstract
Out of all the metal additive manufacturing (AM) techniques, the directed energy deposition (DED) technique, and particularly the wire-based one, are of great interest due to their rapid production. In addition, they are recognized as being the fastest technique capable of producing fully [...] Read more.
Out of all the metal additive manufacturing (AM) techniques, the directed energy deposition (DED) technique, and particularly the wire-based one, are of great interest due to their rapid production. In addition, they are recognized as being the fastest technique capable of producing fully functional structural parts, near-net-shape products with complex geometry and almost unlimited size. There are several wire-based systems, such as plasma arc welding and laser melting deposition, depending on the heat source. The main drawback is the lack of commercially available wire; for instance, the absence of high-strength aluminum alloy wires. Therefore, this review covers conventional and innovative processes of wire production and includes a summary of the Al-Cu-Li alloys with the most industrial interest in order to foment and promote the selection of the most suitable wire compositions. The role of each alloying element is key for specific wire design in WAAM; this review describes the role of each element (typically strengthening by age hardening, solid solution and grain size reduction) with special attention to lithium. At the same time, the defects in the WAAM part limit its applicability. For this reason, all the defects related to the WAAM process, together with those related to the chemical composition of the alloy, are mentioned. Finally, future developments are summarized, encompassing the most suitable techniques for Al-Cu-Li alloys, such as PMC (pulse multicontrol) and CMT (cold metal transfer). Full article
(This article belongs to the Special Issue Design and Post Processing for Metal Additive Manufacturing)
Show Figures

Figure 1

11 pages, 13113 KiB  
Article
Microstructural Features and Microhardness of the Ti-6Al-4V Alloy Synthesized by Additive Plasma Wire Deposition Welding
by Irina P. Semenova, Yuri D. Shchitsyn, Dmitriy N. Trushnikov, Alfiz I. Gareev, Alexander V. Polyakov and Mikhail V. Pesin
Materials 2023, 16(3), 941; https://doi.org/10.3390/ma16030941 - 19 Jan 2023
Cited by 8 | Viewed by 2588
Abstract
Wire arc additive manufacturing (AM) is able to replace the traditional manufacturing processes of Ti alloys. At the same time, the common drawback of Ti workpieces produced by AM via wire deposition welding is the formation of a coarse-grained dendritic structure, its strong [...] Read more.
Wire arc additive manufacturing (AM) is able to replace the traditional manufacturing processes of Ti alloys. At the same time, the common drawback of Ti workpieces produced by AM via wire deposition welding is the formation of a coarse-grained dendritic structure, its strong anisotropy and, consequently, lower strength as compared to a monolithic alloy. In this work, a new method is proposed for the enhancement of the strength properties of the Ti-6Al-4V alloy synthesized by AM via wire deposition welding, which involves the use of a wire with an initial ultrafine-grained (UFG) structure. The UFG wire is characterized by a large number of defects of the crystalline lattice and grain boundaries, which will enable increasing the number of “crystallization centers” of the α-phase, leading to its refinement. The macro- and microstructure, phase composition and microhardness of the Ti-6Al-4V alloy samples were investigated. The microhardness of the alloy produced by layer-by-layer deposition welding using a UFG wire was shown to be on average 20% higher than that of the samples produced by a deposition welding using a conventional wire. The nature of this phenomenon is discussed, as well as the prospects of increasing the mechanical characteristics of Ti alloys produced by additive manufacturing. Full article
(This article belongs to the Special Issue Design and Applications of Functional Materials)
Show Figures

Figure 1

15 pages, 22707 KiB  
Article
Wire Arc Additive and High-Temperature Subtractive Manufacturing of Ti-6Al-4V
by Ryotaro Miyake, Hiroyuki Sasahara, Atsushi Suzuki and Seigo Ouchi
Appl. Sci. 2021, 11(20), 9521; https://doi.org/10.3390/app11209521 - 13 Oct 2021
Cited by 7 | Viewed by 2580
Abstract
We investigated the fabrication and finishing of wall-profile machining by wire and arc additive manufacturing (WAAM) employing plasma welding with Ti-6Al-4V wire. We fabricated and integrated a local shield and a cover for the area below the local shield to achieve higher shielding [...] Read more.
We investigated the fabrication and finishing of wall-profile machining by wire and arc additive manufacturing (WAAM) employing plasma welding with Ti-6Al-4V wire. We fabricated and integrated a local shield and a cover for the area below the local shield to achieve higher shielding ability. The tensile strength of the fabricated object met the forging standard for Ti-6Al-4V, but elongation was about 7%. We also focused on the possibility of reducing the cutting force and increasing the efficiency of the finishing process by cutting workpieces softened by high temperature immediately after the deposition process. We investigated the cutting force and tool wear of the fabricated objects heated to 300 °C using ceramics tools. Results showed that although the cutting force was reduced at high temperature, the wear rate of the tools was high, and the increase in cutting force due to wear was significant. Full article
Show Figures

Figure 1

15 pages, 50034 KiB  
Article
The Effect of Electrochemical Composite Coatings with LaF3-LaB6 Particles in Nickel–Copper Matrix on the Metallurgical Processes in Arc Welding of Low Alloy Ferrite-Pearlite Steels
by Sergey G. Parshin, Victor A. Karkhin, Peter Mayr and Alexey S. Maystro
Materials 2021, 14(6), 1509; https://doi.org/10.3390/ma14061509 - 19 Mar 2021
Cited by 4 | Viewed by 2183
Abstract
Development of welding consumables with fluorides and borides of rare earth metals is a promising area for improving the weldability of low alloy steels. As lanthanum fluoride and boride dissociate, lanthanum and boron dissolve in the weld pool and the welding arc plasma [...] Read more.
Development of welding consumables with fluorides and borides of rare earth metals is a promising area for improving the weldability of low alloy steels. As lanthanum fluoride and boride dissociate, lanthanum and boron dissolve in the weld pool and the welding arc plasma is saturated with fluorine. As a result of FeO, MnO, SiO2 deoxidation and FeS, MnS desulfurization, refractory lanthanum sulfides and oxides La2O3, La2S3 are formed in the weld pool, which can be the crystallization nuclei in the weld pool and the origin of acicular ferrite nucleation. The paper proposes a model of metallurgical processes in the arc and weld pool, as well as a model of electrochemical adsorption of Ni2+ cations in colloidal electrolytes during electrostatic deposition of nano-dispersed insoluble particles of LaF3 or LaB6 on the surface of wire. The paper discusses the constructional design of the welding wire and the technology for forming electrochemical composite coatings with copper and nickel matrix. The composite wires applied in the welding of low alloy steels make it possible to refine the microstructure, increase the tensile strength by 4% and the impact toughness of welds by 20%. Full article
Show Figures

Figure 1

19 pages, 6429 KiB  
Article
Experimental Investigation of Additive Manufacturing Using a Hot-Wire Plasma Welding Process on Titanium Parts
by Pattarawadee Poolperm, Wasawat Nakkiew and Nirut Naksuk
Materials 2021, 14(5), 1270; https://doi.org/10.3390/ma14051270 - 7 Mar 2021
Cited by 6 | Viewed by 2897
Abstract
In this paper, we propose hot-wire plasma welding, a combination of the plasma welding (PAW) process and the hot-wire process in the additive manufacturing (AM) process. Generally, in plasma welding for AM processes, the deposit grain size increases, and the hardness decreases as [...] Read more.
In this paper, we propose hot-wire plasma welding, a combination of the plasma welding (PAW) process and the hot-wire process in the additive manufacturing (AM) process. Generally, in plasma welding for AM processes, the deposit grain size increases, and the hardness decreases as the wall height increases. The coarse microstructure, along with the large grain size, corresponds to an increase in deposit temperature, which leads to poorer mechanical properties. At the same time, the hot-wire laser process seems to contain an overly high interstitial amount of oxygen and nitrogen. With an increasing emphasis on sustainability, the hot-wire plasma welding process offers significant advantages: deeper and narrow penetration than the cold-wire plasma welding, improved design flexibility, large deposition rates, and low dilution percentages. Thus, the hot-wire plasma welding process was investigated in this work. The wire used in the welding process was a titanium American Welding Society (AMS) 4951F (Grade 2) welding wire (diameter 1.6 mm), in which the welding was recorded in real time with a charge-coupled device camera (CCD camera). We studied three parameters of the hot-wire plasma welding process: (1) the welding speed, (2) wire current, and (3) wire feeding speed. The mechanical and physical properties (porosity, Vickers hardness, microstructure, and tensile strength) were examined. It was found that the number of layers, the length and width of the molten pool, and the width of the deposited bead increased, while the height of the layer increased, and the hot-wire current played an important role in the deposition. In addition, these results were benchmarked against specimens created by a hot-wire plasma welding/wire-based additive manufacturing process with an intention to develop the hot-wire PAW process as a potential alternative in the additive manufacturing industry. Full article
Show Figures

Figure 1

Back to TopTop