Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = pile–rock breakwater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 12927 KiB  
Article
Coastal Erosion Dynamics and Protective Measures in the Vietnamese Mekong Delta
by Tran Van Ty, Dinh Van Duy, Lam Tan Phat, Huynh Vuong Thu Minh, Nguyen Truong Thanh, Nguyen Thi Ngoc Uyen and Nigel K. Downes
J. Mar. Sci. Eng. 2024, 12(7), 1094; https://doi.org/10.3390/jmse12071094 - 28 Jun 2024
Cited by 4 | Viewed by 2824
Abstract
The dynamic shifts in shorelines due to erosion and deposition have become a significant challenge in coastal zone management, particularly in the context of climate change and rising sea levels. This paper evaluates the shoreline protection and efficiency of various wave-reducing breakwaters in [...] Read more.
The dynamic shifts in shorelines due to erosion and deposition have become a significant challenge in coastal zone management, particularly in the context of climate change and rising sea levels. This paper evaluates the shoreline protection and efficiency of various wave-reducing breakwaters in the Vietnamese Mekong Delta. The delta exemplifies the coastal erosion issue faced by deltas worldwide. Landsat satellite images were used to establish a coastal development map for the period 2000 to 2022. The wave data in front and behind the breakwaters were analyzed to assess the wave reduction efficiency of various breakwater structures. Our results reveal that coastal erosion is deeply concerning, with almost 40% of the coastline experiencing severe erosion. Hotspot areas have been observed to reach annual erosion rates of nearly 95 m per year. The majority of provinces have adopted protective measures, with 68% of affected shorelines protected to some degree. Our results show breakwaters to be highly effective in reducing wave height, with a 62% reduction in waves reaching the shore. The process of creating offset has taken place in the area from the breakwater back to the mainland, with the rate of increase in compensation also quite fast at up to 3.1 cm/month. The stability of the pile–rock is very high; however, it is necessary to add rock to compensate for the settlement of the rock part. Full article
(This article belongs to the Special Issue Recent Advances in Estuarine Monitoring and Management)
Show Figures

Figure 1

21 pages, 8658 KiB  
Article
The Influence of Crest Width and Working States on Wave Transmission of Pile–Rock Breakwaters in the Coastal Mekong Delta
by Nguyet-Minh Nguyen, Duong Do Van, Tu Le Duy, Nhat Truong Pham, Thanh Duc Dang, Ahad Hasan Tanim, David Wright, Phong Nguyen Thanh and Duong Tran Anh
J. Mar. Sci. Eng. 2022, 10(11), 1762; https://doi.org/10.3390/jmse10111762 - 16 Nov 2022
Cited by 4 | Viewed by 2979
Abstract
The coastline of the Ca Mau and Kien Giang provinces in the Vietnamese Mekong Delta has been severely eroded in recent decades. Pile–Rock Breakwaters (PRBWs) are among the most widely adopted structures for controlling shoreline erosion in this region. These structures are effective [...] Read more.
The coastline of the Ca Mau and Kien Giang provinces in the Vietnamese Mekong Delta has been severely eroded in recent decades. Pile–Rock Breakwaters (PRBWs) are among the most widely adopted structures for controlling shoreline erosion in this region. These structures are effective for wave energy dissipation, stimulating sediment accumulation, and facilitating the restoration of mangrove forests. These breakwaters are generally considered to be the best-engineering practice; however, there is currently insufficient scientific evidence with regard to specific structural design aspects. This can lead to PRBW structures being compromised when deployed in the field. This study used a physical model of a PRBW in a laboratory to investigate several design parameters, including crest width and working states (i.e., submerged, transition, and emerged), and investigated their relationship with the wave transmission coefficient, wave reflection coefficient, and wave energy dissipation. To investigate these relationships further, empirical formulas were derived for PRBWs under different sea states and crest widths to aid the design process. The results showed that the PRBW width had a significant influence on the wave energy coefficients. The findings revealed that the crest width of the breakwater was inversely proportional to the wave transmission coefficient (Kt) under the emerged state. The crest width was also proportional to the wave reduction efficiency and wave energy dissipation in both working states (i.e., the submerged and emerged states). The front wave disturbance coefficient (Kf) was found to be proportional to the wave reflection coefficient, and the wave height in front of the structure was found to increase by up to 1.4 times in the emerged state. The wave reflection coefficient requires special consideration to reduce the toe erosion in the structure. Lastly, empirical equations including linear and non-linear formulas were compared with previous studies for different classes of breakwaters. These empirical equations will be useful for understanding the wave transmission efficiency of PRBWs. The findings of this study provide important guidance for PRBW design in the coastal area of the Mekong Delta. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

17 pages, 5951 KiB  
Article
Using Fine-Grained Sediment and Wave Attenuation as a New Measure for Evaluating the Efficacy of Offshore Breakwaters in Stabilizing an Eroded Muddy Coast: Insights from Ca Mau, the Mekong Delta of Vietnam
by Thai Thanh Luom, Nguyen Tan Phong, Nguyen Tuan Anh, Nguyen Thanh Tung, Le Xuan Tu and Tran Anh Duong
Sustainability 2021, 13(9), 4798; https://doi.org/10.3390/su13094798 - 25 Apr 2021
Cited by 17 | Viewed by 3365
Abstract
Offshore breakwaters can be effective in reducing the energy of incident waves through dissipation, refraction or reflection. Breakwaters are increasingly constructed to stabilize eroded muddy coasts, particularly in developing countries. Accumulation of fine-grained sediment and wave attenuation are two attributes of a stable [...] Read more.
Offshore breakwaters can be effective in reducing the energy of incident waves through dissipation, refraction or reflection. Breakwaters are increasingly constructed to stabilize eroded muddy coasts, particularly in developing countries. Accumulation of fine-grained sediment and wave attenuation are two attributes of a stable muddy coast. Effective interventions in stabilizing eroded muddy coasts include two important elements: accumulation of fine-grained sediment and wave reduction. The efficacy of offshore breakwaters in stabilizing eroded muddy coasts is, however, not yet adequately understood. A crucial question needing attention is whether accumulation of fine-grained sediment and wave attenuation should be used in evaluating the efficacy of these offshore breakwaters in stabilizing eroded muddy coasts. To address this issue, a pile-rock offshore breakwater in Huong Mai, Tieu Dua of Ca Mau, Vietnam was selected as an appropriate example in this regard. Accumulation of fine-grained sediment and wave attenuation were tested as means to investigate the efficacy of the Huong Mai structure in stabilizing the eroded muddy coast. The study was undertaken using field-based measurements and semi-structured interviews in three stages between October 2016 and December 2020. We found that this structure has had limited efficacy in stabilizing the eroded muddy coast. The structure was effective in dissipating the energy of incident waves, but we found no evidence of fine-grained sediment accumulation due to an inappropriate structural design. There was also no monitoring system in place, leading to difficulties in evaluating its efficacy in terms of wave attenuation and accumulation of fine-grained sediment. The gaps between the shoreline and the structure have not been adequately explained, resulting in substantial challenges in replicating the structure elsewhere. The Huong Mai structure should be strengthened using supplementary measures and granulometric tests in order to improve the efficacy in stabilizing eroded muddy coasts. The methods in this study provide new insights in this regard. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

Back to TopTop