Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = pigeon pea starch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 626 KB  
Article
Assessment of Protein Quality and Nutritional Characteristics of Commonly Consumed Pulses in the Caribbean Diet by Different In Vitro Assays
by Daniel J. Thomas, Zhanhui Lu, Yolanda Brummer, Yan Zhu, Ronghua Liu, Lili Mats, Rong Tsao, D. Dan Ramdath and Matthew G. Nosworthy
Foods 2025, 14(2), 283; https://doi.org/10.3390/foods14020283 - 16 Jan 2025
Viewed by 1972
Abstract
Pulses, the dried seeds of leguminous plants, form an important part of the diets of many cultures, including Caribbean cuisine, and are a rich source of protein, carbohydrates, and antioxidants while being low in fats. This study examined the effect of a traditional [...] Read more.
Pulses, the dried seeds of leguminous plants, form an important part of the diets of many cultures, including Caribbean cuisine, and are a rich source of protein, carbohydrates, and antioxidants while being low in fats. This study examined the effect of a traditional home-cooking method on the nutritional characteristics of pulses commonly consumed in the Caribbean: red kidney beans and cranberry beans (Phaseolus vulgaris L.), cowpeas (Vigna unguiculata L.), and pigeon peas (Cajanus cajan L.). Protein quality, determined via three in vitro protein digestibility methods, starch, and phenolic content were determined in pre- and post-cooked samples using established methods. Pulses contained 20–26% protein, and cooking improved protein digestibility on average by 14.0 ± 2.5% (p < 0.05). However, notable differences in digestibility were observed: it was higher in static assays (pH-Drop and pH-Stat) than in the two-step digestibility assay. Average protein digestibility-corrected amino acid score (IVPDCAAS) among cooked pulses was 0.81 ± 0.14, with the highest in cranberry bean (0.82) and cowpea (0.88). Cooking modified pulse starch profiles by increasing total digestible starch. However, resistant starch and slowly digestible starch fractions accounted for approximately 20–25% of total cooked starch content. While total phenolic content (TPC) and antioxidant activity were reduced with cooking, they were within expected ranges for cooked pulse flours; however, they were higher in bean (P. vulgaris) varieties than cowpea and pigeon pea. These findings support the promotion of increased pulse consumption in Caribbean diets. Home cooking is a simple method to enhance pulse protein quality through enhancing digestibility; however, in vitro protein digestibility assays may require further standardization. Full article
(This article belongs to the Section Food Engineering and Technology)
11 pages, 1107 KB  
Article
Substituting Whole Wheat Flour with Pigeon Pea (Cajanus cajan) Flour in Chapati: Effect on Nutritional Characteristics, Color Profiles, and In Vitro Starch and Protein Digestion
by Sirin Sachanarula, Praew Chantarasinlapin and Sirichai Adisakwattana
Foods 2022, 11(20), 3157; https://doi.org/10.3390/foods11203157 - 11 Oct 2022
Cited by 8 | Viewed by 5252
Abstract
Pigeon pea (Cajanus cajan (L.) Millsp.), a potential legume as an economical source of protein, is commonly cultivated in tropical and subtropical regions of the world. Therefore, pigeon pea may be potentially used as a substitute to improve the nutritional profile of [...] Read more.
Pigeon pea (Cajanus cajan (L.) Millsp.), a potential legume as an economical source of protein, is commonly cultivated in tropical and subtropical regions of the world. Therefore, pigeon pea may be potentially used as a substitute to improve the nutritional profile of foods. In the present study, the effect of substitution of whole wheat flour (WWF) with 20% and 40% pigeon pea flour (PPF) on the nutritional properties, color profiles, and starch and protein digestibility of chapati was investigated. The results showed that PPF had higher protein content but less carbohydrate than WWF. The protein content of chapati substituted with 20% and 40% PPF increased by 1.18 and 1.34 times, respectively, compared to WWF chapati, along with a marked decrease in carbohydrate content. Analyses further revealed an increase in the lightness and yellowness and a decrease in the redness of the chapati. Furthermore, glucose release from chapati with 20% and 40% PPF under simulated digestion was attenuated, corresponding to decreased hydrolysis and a predicted glycemic index. In the 40% PPF chapati, a significant reduction in slowly digestible starch (SDS) with increased resistant starch (RS) proportions was achieved without altering the effect on rapidly digestible starch (RDS). In addition, the level of amino-group residues was markedly elevated in 20% and 40% PPF substituted chapati compared to WWF chapati. These findings suggest that PPF can serve as a promising plant-based alternative ingredient to improve the nutrient value of chapati by reducing starch and increasing protein digestibility. Full article
Show Figures

Figure 1

15 pages, 1044 KB  
Article
Technological Properties of Acetylated Pigeon Pea Starch and Its Stabilized Set-Type Yoghurt
by Aderonke Olagunju, Olufunmilayo Omoba, Victor Enujiugha, Adeola Alashi and Rotimi Aluko
Foods 2020, 9(7), 957; https://doi.org/10.3390/foods9070957 - 18 Jul 2020
Cited by 12 | Viewed by 4748
Abstract
The behaviour of graded acetylated pigeon pea starch during heat processing was evaluated in addition to the corresponding effect of their incorporation at 1.5% (w/v) as a stabilizer in set-type yoghurt. Acetylated starch possessed higher solubility and swelling power [...] Read more.
The behaviour of graded acetylated pigeon pea starch during heat processing was evaluated in addition to the corresponding effect of their incorporation at 1.5% (w/v) as a stabilizer in set-type yoghurt. Acetylated starch possessed higher solubility and swelling power than native starch under the temperature regimes considered. Addition of acetylated pigeon pea starch as a stabilizer in yoghurt had positive influence on the water holding capacity (7.7% to 10.4% compared to 13.3% in yoghurt stabilized with native pigeon pea starch) and whey syneresis (approximately 15%, 12%, and 8% increase observed in yoghurt with acetylated pea starch compared to 47% in yoghurt with native pea starch stabilizer) at the end of a 28-day cold storage period. In addition, pea starch-stabilized yoghurt possessed an enhanced sensory attribute (firmness), and compared favourably with gelatin-stabilized yoghurt in terms of overall acceptability. Thus, acetylated pigeon pea starch exhibited improved physicochemical properties and showed usefulness as a stabilizer in yoghurt because it enhanced the physicochemical, storability, and sensorial quality, while improving the body and texture of the product. Full article
(This article belongs to the Section Dairy)
Show Figures

Graphical abstract

12 pages, 1483 KB  
Article
Microbial Shelf-Life, Starch Physicochemical Properties, and In Vitro Digestibility of Pigeon Pea Milk Altered by High Pressure Processing
by Yun-Ting Hsiao and Chung-Yi Wang
Molecules 2020, 25(11), 2516; https://doi.org/10.3390/molecules25112516 - 28 May 2020
Cited by 14 | Viewed by 3692
Abstract
This study examined the effects of high-pressure processing (HPP) on microbial shelf-life, starch contents, and starch gelatinization characteristics of pigeon pea milk. HPP at 200 MPa/240 s, 400 MPa/210 s, and 600 MPa/150 s reduced the count of Escherichia coli O157:H7 in pigeon [...] Read more.
This study examined the effects of high-pressure processing (HPP) on microbial shelf-life, starch contents, and starch gelatinization characteristics of pigeon pea milk. HPP at 200 MPa/240 s, 400 MPa/210 s, and 600 MPa/150 s reduced the count of Escherichia coli O157:H7 in pigeon pea milk by more than 5 log CFU/mL. During the subsequent 21-day refrigerated storage period, the same level of microbial safety was achieved in both HPP-treated and high-temperature short-time (HTST)-pasteurized pigeon pea milk. Differential scanning calorimetry and scanning electron microscope revealed that HPP at 600 MPa and HTST caused a higher degree of gelatinization in pigeon pea milk, with enthalpy of gelatinization (∆H) being undetectable for both treatments. In contrast, HPP at 400 MPa led to an increase in the onset temperature, peak temperature, and conclusion temperature, and a decrease in ∆H, with gelatinization percentages only reaching 18.4%. Results of an in vitro digestibility experiment indicate that maximum resistant starch and slowly digestible starch contents as well as a decreased glycemic index were achieved with HPP at 400 MPa. These results demonstrate that HPP not only prolongs the shelf-life of pigeon pea milk but also alters the structural characteristics of starches and enhances the nutritional value. Full article
(This article belongs to the Special Issue Opportunities and Challenges in High Pressure Processing of Foods)
Show Figures

Graphical abstract

Back to TopTop