Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = phytoantiviral

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1810 KiB  
Article
Mining the Genome of Bacillus velezensis VB7 (CP047587) for MAMP Genes and Non-Ribosomal Peptide Synthetase Gene Clusters Conferring Antiviral and Antifungal Activity
by Saravanan R, S Nakkeeran, N Saranya, C Senthilraja, P Renukadevi, A.S. Krishnamoorthy, Hesham Ali El Enshasy, Hala El-Adawi, V.G. Malathi, Saleh H. Salmen, M. J. Ansari, Naeem Khan and R. Z. Sayyed
Microorganisms 2021, 9(12), 2511; https://doi.org/10.3390/microorganisms9122511 - 3 Dec 2021
Cited by 39 | Viewed by 5581
Abstract
Chemical pesticides have an immense role in curbing the infection of plant viruses and soil-borne pathogens of high valued crops. However, the usage of chemical pesticides also contributes to the development of resistance among pathogens. Hence, attempts were made in this study to [...] Read more.
Chemical pesticides have an immense role in curbing the infection of plant viruses and soil-borne pathogens of high valued crops. However, the usage of chemical pesticides also contributes to the development of resistance among pathogens. Hence, attempts were made in this study to identify a suitable bacterial antagonist for managing viral and fungal pathogens infecting crop plants. Based on our earlier investigations, we identified Bacillus amyloliquefaciens VB7 as a potential antagonist for managing Sclerotinia sclerotiorum infecting carnation, tobacco streak virus infecting cotton and groundnut bud necrosis infecting tomato. Considering the multifaceted action of B. amyloliquefaciens VB7, attempts were made for whole-genome sequencing to assess the antiviral activity against tomato spotted wilt virus infecting chrysanthemum and antifungal action against Fusarium oxysporum f. sp. cubense (Foc). Genome annotation of the isolate B. amyloliquefaciens VB7 was confirmed as B. velezensis VB7 with accession number CP047587. Genome analysis revealed the presence of 9,231,928 reads with an average read length of 149 bp. Assembled genome had 1 contig, with a total length of 3,021,183 bp and an average G+C content of 46.79%. The protein-coding sequences (CDS) in the genome was 3090, transfer RNA (tRNA) genes were 85 with 29 ribosomal RNA (rRNA) genes and 21 repeat regions. The genome of B. velezensis VB7 had 506 hypothetical proteins and 2584 proteins with functional assignments. VB7 genome had the presence of flagellin protein FlaA with 987 nucleotides and translation elongation factor TU (Ef-Tu) with 1191 nucleotides. The identified ORFs were 3911 with 47.22% GC content. Non ribosomal pepide synthetase cluster (NRPS) gene clusters in the genome of VB7, coded for the anti-microbial peptides surfactin, butirosin A/butirosin B, fengycin, difficidin, bacillibactin, bacilysin, and mersacidin the Ripp lanthipeptide. Antiviral action of VB7 was confirmed by suppression of local lesion formation of TSWV in the local lesion host cowpea (Co-7). Moreover, combined application of B. velezensis VB7 with phyto-antiviral principles M. Jalapa and H. cupanioides increased shoot length, shoot diameter, number of flower buds per plant, flower diameter, and fresh weight of chrysanthemum. Further, screening for antifungal action of VB7 expressed antifungal action against Foc in vitro by producing VOC/NVOC compounds, including hexadecanoic acid, linoelaidic acid, octadecanoic acid, clindamycin, formic acid, succinamide, furanone, 4H-pyran, nonanol and oleic acid, contributing to the total suppression of Foc apart from the presence of NRPS gene clusters. Thus, our study confirmed the scope for exploring B. velezensis VB7 on a commercial scale to manage tomato spotted wilt virus, groundnut bud necrosis virus, tobacco streak virus, S. sclerotiorum, and Foc causing panama wilt of banana. Full article
Show Figures

Figure 1

30 pages, 36558 KiB  
Review
Antiviral Activity of Jamaican Medicinal Plants and Isolated Bioactive Compounds
by Henry Lowe, Blair Steele, Joseph Bryant, Emadelden Fouad, Ngeh Toyang and Wilfred Ngwa
Molecules 2021, 26(3), 607; https://doi.org/10.3390/molecules26030607 - 25 Jan 2021
Cited by 26 | Viewed by 21844
Abstract
Plants have had historical significance in medicine since the beginning of civilization. The oldest medical pharmacopeias of the African, Arabian, and Asian countries solely utilize plants and herbs to treat pain, oral diseases, skin diseases, microbial infections, multiple types of cancers, reproductive disorders [...] Read more.
Plants have had historical significance in medicine since the beginning of civilization. The oldest medical pharmacopeias of the African, Arabian, and Asian countries solely utilize plants and herbs to treat pain, oral diseases, skin diseases, microbial infections, multiple types of cancers, reproductive disorders among a myriad of other ailments. The World Health Organization (WHO) estimates that over 65% of the world population solely utilize botanical preparations as medicine. Due to the abundance of plants, plant-derived medicines are more readily accessible, affordable, convenient, and have safer side-effect profiles than synthetic drugs. Plant-based decoctions have been a significant part of Jamaican traditional folklore medicine. Jamaica is of particular interest because it has approximately 52% of the established medicinal plants that exist on earth. This makes the island particularly welcoming for rigorous scientific research on the medicinal value of plants and the development of phytomedicine thereof. Viral infections caused by the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2), hepatitis virus B and C, influenza A virus, and the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) present a significant global burden. This is a review of some important Jamaican medicinal plants, with particular reference to their antiviral activity. Full article
(This article belongs to the Special Issue Herbal Medicines as Antivirals)
Show Figures

Figure 1

Back to TopTop