Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = photosynthetic mollusk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2604 KiB  
Article
Carnosine Synthase (TsATPGD) Alleviates Lipid Peroxidation Under Transcriptional Control by an Nfe2-like Gene in Tridacna Squamosa
by Zhuo Yang, Nai-Kei Wong, Fan Mao, Siwei Wu, Wenjie Yi, Ziniu Yu and Yang Zhang
Antioxidants 2024, 13(11), 1351; https://doi.org/10.3390/antiox13111351 - 4 Nov 2024
Cited by 1 | Viewed by 1367
Abstract
As an important mollusk in reef ecosystems, Tridacna squamosa forms pro-survival symbiotic relationships that hinge on an exquisite redox equilibrium between the host and the photosynthetic symbiont, zooxanthellae. The exact regulatory mechanisms thereof remain poorly understood. In this study, a novel Nfe2-like transcription [...] Read more.
As an important mollusk in reef ecosystems, Tridacna squamosa forms pro-survival symbiotic relationships that hinge on an exquisite redox equilibrium between the host and the photosynthetic symbiont, zooxanthellae. The exact regulatory mechanisms thereof remain poorly understood. In this study, a novel Nfe2-like transcription factor in T. squamosa was identified and characterized with respect to its antioxidant and cytoprotective roles. Gene structure and phylogenetic analysis reveal that T. squamosa possesses a single transcription factor TsNfe2l in contrast to mammalian Nfe2l1 (Nrf1) and Nfe2l2 (Nrf2), belonging to protein members of the bZIP-NFE2 subfamily and functionally resembling the mammalian Nfe2l1. A conserved bZIP domain permits its binding to the antioxidant response element (ARE) in vitro and in HEK293T cells. Further analyses such as promoter prediction suggest that TsNfe2l target genes engage mainly in the regulation of multiple enzymes involved in antioxidation and allied pathways. Notably, TsNfe2l transcriptionally upregulates carnosine synthase (TsATPGD), which subsequently produces L-carnosine abundantly to shield cells from oxidative damage. Moreover, the blockage of TsNfe2l nucleic acid binding reduced the expression of TsATPGD and L-carnosine content in the gill, resulting in elevated lipid peroxidation. Collectively, our findings establish novel molecular insight into TsNfe2l as a critical regulator of redox homeostasis in T. squamosa through carnosine synthesis. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Aquaculture)
Show Figures

Figure 1

14 pages, 2497 KiB  
Article
Ocellatuperoxides A–F, Uncommon Anti-Tumoral γ-Pyrone Peroxides from a Photosynthetic Mollusk Placobranchus ocellatus
by Song-Wei Li, Qihao Wu, Heng Xu, Li-Gong Yao, Cheng Luo, Hong Wang, Hao Zhang, Xu-Wen Li and Yue-Wei Guo
Mar. Drugs 2022, 20(10), 590; https://doi.org/10.3390/md20100590 - 21 Sep 2022
Cited by 3 | Viewed by 2774
Abstract
Six new pairs of γ-pyrone polypropionate enantiomers with an unusual peroxyl bridge at the side chain, namely (±)-ocellatuperoxides A–F (16), were isolated and characterized from the South China Sea photosynthetic mollusk Placobranchus ocellatus. Extensive spectroscopic analysis, single [...] Read more.
Six new pairs of γ-pyrone polypropionate enantiomers with an unusual peroxyl bridge at the side chain, namely (±)-ocellatuperoxides A–F (16), were isolated and characterized from the South China Sea photosynthetic mollusk Placobranchus ocellatus. Extensive spectroscopic analysis, single crystal X-ray diffraction analysis, ECD- (electronic circular dichroism) comparison, and TDDFT (time-dependent density functional theory) ECD computation were used to determine the structures and absolute configurations of new compounds. In a cell viability assay, several compounds showed considerable anti-tumoral effects on human non-small cell lung cancer cells A549 with Gefitinib (7.4 μM) and Erlotinib (2.1 μM) as positive controls. Further RNA-sequencing analysis and gene expression evaluation indicated that the anti-tumoral activity of the most effective compound 3 was associated with the regulation of several important genes, such as FGFR1 and HDAC5. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Figure 1

20 pages, 6807 KiB  
Article
Sterol Composition of Sponges, Cnidarians, Arthropods, Mollusks, and Echinoderms from the Deep Northwest Atlantic: A Comparison with Shallow Coastal Gulf of Mexico
by Laura Carreón-Palau, Nurgül Şen Özdemir, Christopher C. Parrish and Camilla Parzanini
Mar. Drugs 2020, 18(12), 598; https://doi.org/10.3390/md18120598 - 27 Nov 2020
Cited by 9 | Viewed by 4361
Abstract
Triterpenoid biosynthesis is generally anaerobic in bacteria and aerobic in Eukarya. The major class of triterpenoids in bacteria, the hopanoids, is different to that in Eukarya, the lanostanoids, and their 4,4,14-demethylated derivatives, sterols. In the deep sea, the prokaryotic contribution to primary productivity [...] Read more.
Triterpenoid biosynthesis is generally anaerobic in bacteria and aerobic in Eukarya. The major class of triterpenoids in bacteria, the hopanoids, is different to that in Eukarya, the lanostanoids, and their 4,4,14-demethylated derivatives, sterols. In the deep sea, the prokaryotic contribution to primary productivity has been suggested to be higher because local environmental conditions prevent classic photosynthetic processes from occurring. Sterols have been used as trophic biomarkers because primary producers have different compositions, and they are incorporated in primary consumer tissues. In the present study, we inferred food supply to deep sea, sponges, cnidarians, mollusks, crustaceans, and echinoderms from euphotic zone production which is driven by phytoplankton eukaryotic autotrophy. Sterol composition was obtained by gas chromatography and mass spectrometry. Moreover, we compared the sterol composition of three phyla (i.e., Porifera, Cnidaria, and Echinodermata) collected between a deep and cold-water region and a shallow tropical area. We hypothesized that the sterol composition of shallow tropical benthic organisms would better reflect their photoautotrophic sources independently of the taxonomy. Shallow tropical sponges and cnidarians from environments showed plant and zooxanthellae sterols in their tissues, while their deep-sea counterparts showed phytoplankton and zooplankton sterols. In contrast, echinoids, a class of echinoderms, the most complex phylum along with hemichordates and chordates (deuterostomes), did not show significant differences in their sterol profile, suggesting that cholesterol synthesis is present in deuterostomes other than chordates. Full article
Show Figures

Figure 1

Back to TopTop