Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = photoexcited NADH models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2907 KB  
Article
Thermodynamic Cards of Classic NADH Models and Their Related Photoexcited States Releasing Hydrides in Nine Elementary Steps and Their Applications
by Bao-Chen Qian, Xiao-Qing Zhu and Guang-Bin Shen
Molecules 2025, 30(5), 1053; https://doi.org/10.3390/molecules30051053 - 25 Feb 2025
Viewed by 980
Abstract
Thermodynamic cards of three classic NADH models (XH), namely 1-benzyl-1,4-dihydronicotinamide (BNAH), Hantzsch ester (HEH), and 10-methyl-9,10-dihydroacridine (AcrH), as well as their photoexcited states (XH*: BNAH*, HEH*, AcrH*) releasing hydrides in nine elementary steps in acetonitrile are established. According to these thermodynamic cards, the [...] Read more.
Thermodynamic cards of three classic NADH models (XH), namely 1-benzyl-1,4-dihydronicotinamide (BNAH), Hantzsch ester (HEH), and 10-methyl-9,10-dihydroacridine (AcrH), as well as their photoexcited states (XH*: BNAH*, HEH*, AcrH*) releasing hydrides in nine elementary steps in acetonitrile are established. According to these thermodynamic cards, the thermodynamic reducing abilities of XH* are remarkably enhanced upon photoexcitation, rendering them thermodynamically highly potent electron, hydrogen atom, and hydride donors. The application of these thermodynamic cards to imine reduction is demonstrated in detail, revealing that photoexcitation enables XH* to act as better hydride donors, transforming the hydride transfer process from thermodynamically unfeasible to feasible. Most intriguingly, AcrH* is identified as the most thermodynamically favorable electron, hydride, and hydrogen atom donor among the three classic NADH models and their photoexcited states. The exceptional thermodynamic properties of XH* in hydride release inspire further investigation into the excited wavelengths, excited potentials, and excited state stabilities of more organic hydrides, as well as the discovery of novel and highly effective photoexcited organic hydride reductants. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop