Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = photocatalytic conversion of biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1275 KiB  
Article
Photocatalytic Conversion of β-O-4 Lignin Model Dimers: The Effect of Benzylic Ketones on Reaction Pathway
by Gary. N. Sheldrake, Nathan Skillen, Peter. K. J. Robertson and Christopher W. J. Murnaghan
Catalysts 2025, 15(6), 525; https://doi.org/10.3390/catal15060525 - 26 May 2025
Viewed by 604
Abstract
The conversion of biomass towards value-added and platform chemicals has become the focus of extensive research these past two decades. One of the methods that has been increasingly studied is the use of semiconductor-mediated photocatalysis for biomass conversion. Titanium dioxide has previously been [...] Read more.
The conversion of biomass towards value-added and platform chemicals has become the focus of extensive research these past two decades. One of the methods that has been increasingly studied is the use of semiconductor-mediated photocatalysis for biomass conversion. Titanium dioxide has previously been demonstrated to be an effective commercial catalyst for the cleavage of bonds within lignin and also cellulose and hemicellulose. Described herein is the deployment of TiO2 for the cleavage of bonds within two β-O-4 lignin model compounds, one bearing a ketone in the α-position and the other an alcohol. The presence of a ketone in the benzylic position in one of the models had a pronounced effect under photolytic conditions, e.g., in the absence of a photocatalyst but with irradiation present. The subsequent reduction of the benzylic ketone resulted in observed sensitivity towards the irradiation and solely photocatalytic conversion was achieved. In addition, reaction products are proposed, which demonstrate a feasible method for β-O-4 cleavage in native lignin extracts. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Graphical abstract

13 pages, 1994 KiB  
Article
Exploring the Photocatalytic Efficiency of Gold Nanoparticles Deposited on Ni-Al-Zr-Layered Double Hydroxides for Selective Glucose Oxidation
by Nihel Dib, Frédéric Sauvage, Lucie Quéhon, Khadidja Khaldi, Sumeya Bedrane, José Juan Calvino, Redouane Bachir, Ginesa Blanco and Gwladys Pourceau
Molecules 2025, 30(1), 13; https://doi.org/10.3390/molecules30010013 - 24 Dec 2024
Viewed by 937
Abstract
Confronting escalating challenges in energy security and environmental sustainability has intensified interest in renewable sources for fuels and chemicals. Among the most promising alternatives, sugars derived from biomass are emerging as a cornerstone in advancing an environmentally sustainable economy. Within this framework, the [...] Read more.
Confronting escalating challenges in energy security and environmental sustainability has intensified interest in renewable sources for fuels and chemicals. Among the most promising alternatives, sugars derived from biomass are emerging as a cornerstone in advancing an environmentally sustainable economy. Within this framework, the development of sunlight-driven carbohydrate oxidation is of significant interest, as it enables the production of a broad spectrum of high-value, bio-sourced chemicals through eco-friendly processes. Gold nanoparticles (Au NPs) immobilized on inorganic supports have demonstrated considerable potential in this area, although the methodology still requires further exploration. In this study, we explored the selective oxidation of glucose into the corresponding gluconic acid salt in presence of a novel Au/Ni-Al-Zr-layered double hydroxide (LDH) photocatalyst under standardized A.M. 1.5 G light illumination. To optimize the photocatalytic conditions, an experimental plan is herein proposed, highlighting the critical influences of both catalyst loading and pH. In optimal conditions, the Au catalyst demonstrated a high efficiency, achieving 87% glucose conversion and 100% selectivity towards gluconic acid in only 90 min. By means of long-pass filters to select the incident light energy to the photocatalytic reactor, we evidenced that the charge transfer processes were occurring from the Ni-Al-Zr LDH support to the gold nanoparticles, thus opening new directions towards further photocatalyst modifications. This work underlines the potential of Au/LDH materials for sunlight-driven photocatalysis and provides a pathway for the sustainable production of high-value chemicals from renewable biomass sources. Full article
Show Figures

Graphical abstract

19 pages, 4541 KiB  
Article
Valorization of Selected Biomass-Derived Molecules on Olea europaea Leaves-Biotemplated TiO2-g-C3N4 Photocatalysts
by M. Carmen Herrera-Beurnio, Francisco J. López-Tenllado, Alejandro Ariza-Pérez, Jesús Hidalgo-Carrillo, Rafael Estevez, Juan Martín-Gómez, Francisco J. Urbano and Alberto Marinas
Biomimetics 2024, 9(12), 726; https://doi.org/10.3390/biomimetics9120726 - 24 Nov 2024
Viewed by 1229
Abstract
Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO2 semiconductors were synthesized using Olea europaea leaves as templates. Then, g-C3N4 was coupled to materials to later incorporate Pt [...] Read more.
Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO2 semiconductors were synthesized using Olea europaea leaves as templates. Then, g-C3N4 was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol. In glycerol photoreforming, the presence of Pt (superficial or dopant) enhanced hydrogen production, being Pt@AOLCN (a heterojunction containing biotemplated TiO2, g-C3N4, and Pt) the system that exhibited the highest efficiency (3053.4 µmol·gcat−1·h−1). For photoacetalization, while Pt reduced cinnamaldehyde conversion, it improved selectivity when incorporated on TiO2. Notably, carbon nitride (CN) exhibited the highest yield after 16 h of testing. The study emphasizes the importance of tailoring catalyst selection to specific reactions, as efficiency is closely tied to the structural and chemical properties of the materials. These findings contribute to the development of efficient photocatalysts for sustainable biomass valorization processes. Full article
(This article belongs to the Special Issue Smart Materials and Bionic Engineering)
Show Figures

Graphical abstract

14 pages, 3928 KiB  
Article
Fe-Loaded Montmorillonite/TiO2 Composite as a Promising Photocatalyst for Selective Conversion of Glucose to Formic Acid under Visible-Light Irradiation
by Assadawoot Srikhaow, Li Zhang, Chitiphon Chuaicham, Jirawat Trakulmututa, Sulakshana Shenoy and Keiko Sasaki
Crystals 2023, 13(12), 1609; https://doi.org/10.3390/cryst13121609 - 21 Nov 2023
Cited by 2 | Viewed by 1676
Abstract
The development of efficient and inexpensive photocatalysts for the production of high-value chemicals from the photoreforming of biomass is a highly attractive strategy to establish the production of chemicals from sustainable resources. In this work, Fe-loaded montmorillonite/TiO2 composite (Fe-Mt/TiO2), pure [...] Read more.
The development of efficient and inexpensive photocatalysts for the production of high-value chemicals from the photoreforming of biomass is a highly attractive strategy to establish the production of chemicals from sustainable resources. In this work, Fe-loaded montmorillonite/TiO2 composite (Fe-Mt/TiO2), pure TiO2, Mt/TiO2 and Mt/Fe-TiO2 were fabricated and further utilized as photocatalysts for the production of formic acid from glucose under visible-light irradiation. Among the as-prepared composites, the Fe-Mt/TiO2 exhibited the highest glucose conversion (83%), formic acid production (44%) and formic acid selectivity (53%). The effective heterojunction between Fe-Mt and TiO2 is proposed to describe the superior photocatalytic activity of Fe-Mt/TiO2, which effectively suppressed the recombination of the photogenerated electrons and holes during the reaction. Mechanism investigations suggested that the selective photocatalytic oxidation of glucose into formic acid by Fe-Mt/TiO2 mainly occurred through an α-scission reaction pathway, driven by the main active species as O2 and 1O2. The research findings in this work suggested that the Fe-Mt/TiO2 composite can be applied as a low-cost, easy-to-prepare, reusable and selective photocatalyst for sustainable synthesis of high-value chemicals from biomass-derived substrates. Full article
(This article belongs to the Special Issue Synthesis and Properties of Photocatalysts)
Show Figures

Figure 1

27 pages, 4927 KiB  
Review
Waste Biomass Selective and Sustainable Photooxidation to High-Added-Value Products: A Review
by Liliana Llatance-Guevara, Nelly Esther Flores, Germán Omar Barrionuevo and José Luis Mullo Casillas
Catalysts 2022, 12(10), 1091; https://doi.org/10.3390/catal12101091 - 21 Sep 2022
Cited by 16 | Viewed by 3639
Abstract
Researchers worldwide seek to develop convenient, green, and ecological production processes to synthesize chemical products with high added value. In this sense, lignocellulosic biomass photocatalysis is an excellent process for obtaining various outcomes for the industry. One issue of biomass transformation via heterogeneous [...] Read more.
Researchers worldwide seek to develop convenient, green, and ecological production processes to synthesize chemical products with high added value. In this sense, lignocellulosic biomass photocatalysis is an excellent process for obtaining various outcomes for the industry. One issue of biomass transformation via heterogeneous catalysis into valuable chemicals is the selection of an adequate catalyst that ensures high conversion and selectivity at low costs. Titanium oxide (TiO2), is widely used for several applications, including photocatalytic biomass degradation, depolymerization, and transformation. Graphite carbon nitride (g-C3N4) is a metal-free polymeric semiconductor with high oxidation and temperature resistance and there is a recent interest in developing this catalyst. Both catalysts are amenable to industrial production, relatively easy to dope, and suited for solar light absorption. Recent investigations also show the advantages of using heterojunctions, for biomass derivates production, due to their better solar spectrum absorption properties and, thus, higher efficiency, conversion, and selectivity over a broader spectrum. This work summarizes recent studies that maximize selectivity and conversion of biomass using photocatalysts based on TiO2 and g-C3N4 as supports, as well as the advantages of using metals, heterojunctions, and macromolecules in converting cellulose and lignin. The results presented show that heterogeneous photocatalysis is an interesting technology for obtaining several chemicals of industrial use, especially when using TiO2 and g-C3N4 doped with metals, heterojunctions, and macromolecules because these modified catalysts permit higher conversion and selectivity, milder reaction conditions, and reduced cost due to solar light utilization. In order to apply these technologies, it is essential to adopt government policies that promote the use of photocatalysts in the industry, in addition to encouraging active collaboration between photooxidation research groups and companies that process lignocellulosic biomass. Full article
(This article belongs to the Special Issue 10th Anniversary of Catalysts—Feature Papers in Photocatalysis)
Show Figures

Graphical abstract

15 pages, 1601 KiB  
Article
Photocatalytic Hydrogen Production from Aqueous Solutions of Glucose and Xylose over Layered Perovskite-like Oxides HCa2Nb3O10, H2La2Ti3O10 and Their Inorganic-Organic Derivatives
by Sergei A. Kurnosenko, Vladimir V. Voytovich, Oleg I. Silyukov, Ivan A. Rodionov and Irina A. Zvereva
Nanomaterials 2022, 12(15), 2717; https://doi.org/10.3390/nano12152717 - 7 Aug 2022
Cited by 14 | Viewed by 2673
Abstract
Nowadays, the efficient conversion of plant biomass components (alcohols, carbohydrates, etc.) into more energy-intensive fuels, such as hydrogen, is one of the urgent scientific and technological problems. The present study is the first one focused on the photoinduced hydrogen evolution from aqueous D-glucose [...] Read more.
Nowadays, the efficient conversion of plant biomass components (alcohols, carbohydrates, etc.) into more energy-intensive fuels, such as hydrogen, is one of the urgent scientific and technological problems. The present study is the first one focused on the photoinduced hydrogen evolution from aqueous D-glucose and D-xylose using layered perovskite-like oxides HCa2Nb3O10, H2La2Ti3O10, and their organically modified derivatives that have previously proven themselves as highly active photocatalysts. The photocatalytic performance was investigated for the bare compounds and products of their surface modification with a 1 mass. % Pt cocatalyst. The photocatalytic experiments followed an innovative scheme including dark stages as well as the control of the reaction suspension’s pH and composition. The study has revealed that the inorganic−organic derivatives of the layered perovskite-like oxides can provide efficient conversion of carbohydrates into hydrogen fuel, being up to 8.3 times more active than the unmodified materials and reaching apparent quantum efficiency of 8.8%. Based on new and previously obtained data, it was shown that the oxides’ interlayer space functions as an additional reaction zone in the photocatalytic hydrogen production and the contribution of this zone to the overall activity is dependent on the steric characteristics of the sacrificial agent used. Full article
(This article belongs to the Special Issue Heterogeneous Photocatalysts Based on Nanocomposites)
Show Figures

Figure 1

10 pages, 3424 KiB  
Article
Biomass Photoreforming for Hydrogen Production over Hierarchical 3DOM TiO2-Au-CdS
by Na Zhong, Xinti Yu, Heng Zhao, Jinguang Hu and Ian D. Gates
Catalysts 2022, 12(8), 819; https://doi.org/10.3390/catal12080819 - 26 Jul 2022
Cited by 10 | Viewed by 2421
Abstract
Photocatalytic hydrogen production is a promising route to the provision of sustainable and green energy. However, the excess addition of traditional electron donors as the sacrificial agents to consume photogenerated holes greatly reduces the feasibility of this approach for commercialization. Herein, considering the [...] Read more.
Photocatalytic hydrogen production is a promising route to the provision of sustainable and green energy. However, the excess addition of traditional electron donors as the sacrificial agents to consume photogenerated holes greatly reduces the feasibility of this approach for commercialization. Herein, considering the abundant hydroxyl groups in cellulose, the major component of biomass, we adopted glucose (a component unit of cellulose), cellobiose (a structure unit of cellulose) and dissolving pulp (a pretreated cellulose) as electron donors for photocatalytic hydrogen production over a TiO2-Au-CdS material. The well-designed ternary TiO2-Au-CdS possesses a hierarchical three-dimensional ordered macroporous (3DOM) structure, which not only benefits light harvesting but can also facilitate mass diffusion to boost the reaction kinetics. As expected, the fabricated photocatalyst exhibits considerable hydrogen production from glucose (645.1 μmol·h−1·g−1), while the hydrogen production rates gradually decrease with the increased complexity in structure from cellobiose (273.9 μmol·h−1·g−1) to dissolving pulp (79.7 μmol·h−1·g−1). Other gaseous components such as CO and CH4 are also produced, indicating the partial conversion of biomass during the photoreforming process. This work demonstrates the feasibility of sustainable hydrogen production from biomass by photoreforming with a rational photocatalyst design. Full article
(This article belongs to the Special Issue Biomass Valorization)
Show Figures

Graphical abstract

15 pages, 2571 KiB  
Article
Visible-Light-Active Zn–Fe Layered Double Hydroxide (LDH) for the Photocatalytic Conversion of Rice Husk Extract to Value-Added Products
by Muhammad Saeed, Muhammad Zafar, Abdul Razzaq, Shenawar Ali Khan, Zakir Khan and Woo Young Kim
Appl. Sci. 2022, 12(5), 2313; https://doi.org/10.3390/app12052313 - 23 Feb 2022
Cited by 4 | Viewed by 3639
Abstract
One of the major causes of excess CO2 in the atmosphere is the direct burning of biomass waste, which can be obviated by the photocatalytic biomass conversion to useful/valuable chemicals/fuels, a sustainable and renewable approach. The present research work is focused on [...] Read more.
One of the major causes of excess CO2 in the atmosphere is the direct burning of biomass waste, which can be obviated by the photocatalytic biomass conversion to useful/valuable chemicals/fuels, a sustainable and renewable approach. The present research work is focused on the development of a novel Zn–Fe LDH by a simple co-precipitation method and its utilization for the photocatalytic conversion of a rice husk extract (extracted from rice husk by means of pyrolysis) to value-added products. The synthesized, pure Zn–Fe LDH was characterized by various analytical techniques such as XRD, SEM, FTIR, and UV–Visible DRS spectroscopy. The rice husk extract was converted in a photocatalytic reactor under irradiation with 75 W white light, and the valued-added chemicals were analyzed by gas chromatography–mass spectrometry (GC–MS). It was found that the compounds in the rice husk extract before the photocatalytic reaction were mainly carboxylic acids, phenols, alcohols, alkanes (in a small amount), aldehydes, ketones, and amines. After the photocatalytic reaction, all the carboxylic acids and phenols were completely converted into alkanes by complex reactions. Hence, photocatalytic biomass conversion of a rice husk extract was successfully carried out in the present experimental work, opening new avenues for the development of related research domains, with a great potential for obtaining an alternate fuel and overcoming environmental pollution. Full article
Show Figures

Figure 1

13 pages, 12526 KiB  
Article
Biochar from Spent Malt Rootlets and Its Application to an Energy Conversion and Storage Device
by John Vakros, Ioannis D. Manariotis, Vassilios Dracopoulos, Dionissios Mantzavinos and Panagiotis Lianos
Chemosensors 2021, 9(3), 57; https://doi.org/10.3390/chemosensors9030057 - 22 Mar 2021
Cited by 17 | Viewed by 3478
Abstract
Activated carbon obtained from biomass wastes was presently studied in order to evaluate its applicability in an energy storage device. Biochar was obtained by the carbonization of spent malt rootlets and was further processed by mild treatment in NaOH. The final product had [...] Read more.
Activated carbon obtained from biomass wastes was presently studied in order to evaluate its applicability in an energy storage device. Biochar was obtained by the carbonization of spent malt rootlets and was further processed by mild treatment in NaOH. The final product had a specific surface of 362 m2 g−1 and carried Na, P and a few mineral sites. This material was first characterized by several techniques. Then it was used to make a supercapacitor electrode, which reached a specific capacitance of 156 F g−1. The supercapacitor electrode was combined with a photocatalytic fuel cell, making a simple three-electrode device functioning with a single alkaline electrolyte. This device allows solar energy conversion and storage at the same time, promoting the use of biomass wastes for energy applications. Full article
Show Figures

Graphical abstract

20 pages, 9040 KiB  
Article
Photocatalytic Oxidation of HMF under Solar Irradiation: Coupling of Microemulsion and Lyophilization to Obtain Innovative TiO2-Based Materials
by Alessandro Allegri, Valeriia Maslova, Magda Blosi, Anna Luisa Costa, Simona Ortelli, Francesco Basile and Stefania Albonetti
Molecules 2020, 25(22), 5225; https://doi.org/10.3390/molecules25225225 - 10 Nov 2020
Cited by 17 | Viewed by 4738
Abstract
The photocatalytic oxidation of biomass-derived building blocks such as 5-hydroxymethylfurfural (HMF) is a promising reaction for obtaining valuable chemicals and the efficient long-term storage of solar radiation. In this work, we developed innovative TiO2-based materials capable of base-free HMF photo-oxidation in [...] Read more.
The photocatalytic oxidation of biomass-derived building blocks such as 5-hydroxymethylfurfural (HMF) is a promising reaction for obtaining valuable chemicals and the efficient long-term storage of solar radiation. In this work, we developed innovative TiO2-based materials capable of base-free HMF photo-oxidation in water using simulated solar irradiation. The materials were prepared by combining microemulsion and spray-freeze drying (SFD), resulting in highly porous systems with a large surface area. The effect of titania/silica composition and the presence of gold-copper alloy nanoparticles on the properties of materials as well as photocatalytic performance were evaluated. Among the lab-synthesized photocatalysts, Ti15Si85 SFD and Au3Cu1/Ti15Si85 SFD achieved the higher conversions, while the best selectivity was observed for Au3Cu1/Ti15Si85 SFD. The tests with radical scavengers for both TiO2-m and Au3Cu1/Ti15Si85 SFD suggested that primary species responsible for the selective photo-oxidation of HMF are photo-generated electrons and/or superoxide radicals. Full article
(This article belongs to the Special Issue Platform Chemical: Hydroxymethylfurfural (HMF) II)
Show Figures

Figure 1

21 pages, 3082 KiB  
Review
Photocatalyzed Transformation of Free Carbohydrates
by Mehdi Omri, Frédéric Sauvage, Séma Golonu, Anne Wadouachi and Gwladys Pourceau
Catalysts 2018, 8(12), 672; https://doi.org/10.3390/catal8120672 - 19 Dec 2018
Cited by 12 | Viewed by 4995
Abstract
In the growing context of sustainable chemistry, one of the challenges of organic chemists is to develop efficient and environmentally friendly methods for the synthesis of high-added-value products. Heterogeneous photocatalytic transformations have brought revolution in this regard, as they take advantage of an [...] Read more.
In the growing context of sustainable chemistry, one of the challenges of organic chemists is to develop efficient and environmentally friendly methods for the synthesis of high-added-value products. Heterogeneous photocatalytic transformations have brought revolution in this regard, as they take advantage of an unlimited source of energy (solar light) or artificial UV light to onset organic chemical modifications. The abundance of free carbohydrates as chemical platform feedstock offers a great opportunity to obtain a variety of industrial interest compounds from biomass. Due to their chirality and polyfunctionality, the conversion of sugars generally requires multi-step protocols with protection/deprotection steps and hazardous chemical needs. In this context, several selective and eco-friendly methodologies are currently under development. This review presents a state of art of the recent accomplishments concerning the use of photocatalysts for the transformation and valorization of free carbohydrates. It discusses the approaches leading to the selective oxidation of free sugars, their degradation into organic chemicals, or their use for hydrogen production. Full article
Show Figures

Figure 1

12 pages, 3075 KiB  
Article
Mechanochemical Synthesis of TiO2 Nanocomposites as Photocatalysts for Benzyl Alcohol Photo-Oxidation
by Weiyi Ouyang, Ewelina Kuna, Alfonso Yepez, Alina M. Balu, Antonio A. Romero, Juan Carlos Colmenares and Rafael Luque
Nanomaterials 2016, 6(5), 93; https://doi.org/10.3390/nano6050093 - 18 May 2016
Cited by 49 | Viewed by 8928
Abstract
TiO2 (anatase phase) has excellent photocatalytic performance and different methods have been reported to overcome its main limitation of high band gap energy. In this work, TiO2-magnetically-separable nanocomposites (MAGSNC) photocatalysts with different TiO2 loading were synthesized using a simple [...] Read more.
TiO2 (anatase phase) has excellent photocatalytic performance and different methods have been reported to overcome its main limitation of high band gap energy. In this work, TiO2-magnetically-separable nanocomposites (MAGSNC) photocatalysts with different TiO2 loading were synthesized using a simple one-pot mechanochemical method. Photocatalysts were characterized by a number of techniques and their photocatalytic activity was tested in the selective oxidation of benzyl alcohol to benzaldehyde. Extension of light absorption into the visible region was achieved upon titania incorporation. Results indicated that the photocatalytic activity increased with TiO2 loading on the catalysts, with moderate conversion (20%) at high benzaldehyde selectivity (84%) achieved for 5% TiO2-MAGSNC. These findings pointed out a potential strategy for the valorization of lignocellulosic-based biomass under visible light irradiation using designer photocatalytic nanomaterials. Full article
(This article belongs to the Special Issue Nanoparticles for Catalysis)
Show Figures

Figure 1

Back to TopTop