Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = photo-generated microwave carriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3030 KiB  
Article
Construction of Porphyrin-Based Bimetallic Nanomaterials with Photocatalytic Properties
by Zhiqiang Ji, Mengnan Yuan, Zhaoqin He, Hao Wei, Xuemin Wang, Jianxin Song and Lisha Jiang
Molecules 2024, 29(3), 708; https://doi.org/10.3390/molecules29030708 - 3 Feb 2024
Cited by 4 | Viewed by 1851
Abstract
The efficient synthesis of nanosheets containing two metal ions is currently a formidable challenge. Here, we attempted to dope lanthanide-based bimetals into porphyrin-based metal-organic skeleton materials (MOFs) by microwave-assisted heating. The results of the EDX, ICP, and XPS tests show that we have [...] Read more.
The efficient synthesis of nanosheets containing two metal ions is currently a formidable challenge. Here, we attempted to dope lanthanide-based bimetals into porphyrin-based metal-organic skeleton materials (MOFs) by microwave-assisted heating. The results of the EDX, ICP, and XPS tests show that we have successfully synthesized porphyrin-based lanthanide bimetallic nanosheets (Tb-Eu-TCPP) using a household microwave oven. In addition, it is tested and experimentally evident that these nanosheets have a thinner thickness, a larger BET surface area, and higher photogenerated carrier separation efficiency than bulk porphyrin-based bimetallic materials, thus exhibiting enhanced photocatalytic activity and n-type semiconductor properties. Furthermore, the prepared Tb-Eu-TCPP nanomaterials are more efficient in generating single-linear state oxygen under visible light irradiation compared to pristine monometallic nanosheets due to the generation of bimetallic nodes. The significant increase in catalytic activity is attributed to the improved separation and transfer efficiency of photogenerated carriers. This study not only deepens our understanding of lanthanide bimetallic nanosheet materials but also introduces an innovative approach to improve the photocatalytic performance of MOFs. Full article
Show Figures

Graphical abstract

39 pages, 8915 KiB  
Review
Preparation and Photocatalytic Activities of TiO2-Based Composite Catalysts
by Huaitao Yang, Beibei Yang, Wei Chen and Junjiao Yang
Catalysts 2022, 12(10), 1263; https://doi.org/10.3390/catal12101263 - 17 Oct 2022
Cited by 98 | Viewed by 14310
Abstract
While modern industry has contributed to the prosperity of an increasingly urbanized society, it has also led to serious pollution problems, with discharged wastewater and exhaust gases causing significant environmental harm. Titanium dioxide (TiO2), which is an excellent photocatalyst, has received [...] Read more.
While modern industry has contributed to the prosperity of an increasingly urbanized society, it has also led to serious pollution problems, with discharged wastewater and exhaust gases causing significant environmental harm. Titanium dioxide (TiO2), which is an excellent photocatalyst, has received extensive attention because it is inexpensive and able to photocatalytically degrade pollutants in an environmentally friendly manner. TiO2 has many advantages, including high chemical stability, low toxicity, low operating costs, and environmental friendliness. TiO2 is an N-order semiconductor material with a bandgap of 3.2 eV. Only when the wavelength of ultraviolet light is less than or equal to 387.5 nm, the valence band electrons can obtain the energy of the photon and pass through the conduction band to form photoelectrons, meanwhile the valence band forms a photogenerated hole. And light in other wavelength regions does not excite this photogenerated electrons. The most common methods used to improve the photocatalytic efficiency of TiO2 involve increasing its photoresponse range and reducing photogenerated-carrier coupling. The morphology, size, and structure of a heterojunction can be altered through element doping, leading to improved photocatalytic efficiency. Mainstream methods for preparing TiO2 are reviewed in this paper, with several excellent preparation schemes for improving the photocatalytic efficiency of TiO2 introduced. TiO2 is mainly prepared using sol-gel, solvothermal, hydrothermal, anodic oxidation, microwave-assisted, CVD and PVD methods, and TiO2 nanoparticles with excellent photocatalytic properties can also be prepared. Ti-containing materials are widely used to purify harmful gases, as well as contaminants from building materials, coatings, and daily necessities. Therefore, the preparation and applications of titanium materials have become globally popular research topics. Full article
Show Figures

Figure 1

11 pages, 13120 KiB  
Article
Microwave-Assisted Photocatalytic Degradation of Organic Pollutants via CNTs/TiO2
by Yuqing Ren, Yao Chen, Qinyu Li, Hexing Li and Zhenfeng Bian
Catalysts 2022, 12(9), 940; https://doi.org/10.3390/catal12090940 - 24 Aug 2022
Cited by 17 | Viewed by 3053
Abstract
Introducing microwave fields into photocatalytic technology is a promising strategy to suppress the recombination of photogenerated charge carriers. Here, a series of microwave-absorbing photocatalysts, xCNTs/TiO2, were prepared by combining titanium dioxide (TiO2) with carbon nanotubes (CNTs) using a typical [...] Read more.
Introducing microwave fields into photocatalytic technology is a promising strategy to suppress the recombination of photogenerated charge carriers. Here, a series of microwave-absorbing photocatalysts, xCNTs/TiO2, were prepared by combining titanium dioxide (TiO2) with carbon nanotubes (CNTs) using a typical alcoholic thermal method to study the promotion of microwave-generated thermal and athermal effects on the photocatalytic oxidation process. As good carriers that are capable of absorbing microwaves and conducting electrons, CNTs can form hot spots and defects under the action of the thermal effect from microwaves to capture electrons generated on the surface of TiO2 and enhance the separation efficiency of photogenerated electrons (e) and holes (h+). Excluding the influence of the reaction temperature, the athermal effect of the microwave field had a polarizing effect on the catalyst, which improved the light absorption rate of the catalyst. Moreover, microwave radiation also promoted the activation of oxygen molecules and hydroxyl groups on the catalyst surface to generate more reactive oxygen radicals. According to the mechanism analysis, the microwave effect significantly improved the photocatalytic advanced oxidation process, which lays a solid theoretical foundation for practical application. Full article
(This article belongs to the Special Issue 10th Anniversary of Catalysts—Feature Papers in Photocatalysis)
Show Figures

Figure 1

11 pages, 2445 KiB  
Article
Photo-Generation of Tunable Microwave Carriers at 2 µm Wavelengths Using Double Sideband with Carrier Suppression Modulation
by Di Ji, Zhitao Hu, Nan Ye, Fufei Pang and Yingxiong Song
Appl. Sci. 2022, 12(6), 3172; https://doi.org/10.3390/app12063172 - 20 Mar 2022
Viewed by 2246
Abstract
At 2 µm wavelengths (149.9 THz), hollow-core photonics band gap fibers have higher light power damage thresholds, stable polarization states, and lower losses of 0.1 dB/km. Additionally, a thulium-doped fiber amplifier can provide a gain of >35 dB. Specifically, an indium-rich InGaAs photodetector [...] Read more.
At 2 µm wavelengths (149.9 THz), hollow-core photonics band gap fibers have higher light power damage thresholds, stable polarization states, and lower losses of 0.1 dB/km. Additionally, a thulium-doped fiber amplifier can provide a gain of >35 dB. Specifically, an indium-rich InGaAs photodetector shows a naturally higher photoresponsivity at 2 µm wavelengths than the C-band. Therefore, using tunable photo-generated microwave technology at 2 µm wavelengths could achieve higher photo-to-electric power conversion efficiencies for higher RF output power applications using the same method at the same frequency. Here, a double sideband with the carrier suppression modulation method was experimentally applied on 2 µm wavelengths to generate tunable and stable microwave carriers. Comparison experiments were also applied on the 1.55 µm (193.4 THz)/1.31 µm wavelengths (228.8 THz) based on the same indium-rich InGaAs photodetector. Through normalization on the wavelength-corresponded squared external quantum efficiency to visualize the photo-to-electric power conversion efficiency at different wavelengths under the same input optical signal power, the ratio between the results at 2 µm wavelengths and C/O-band is abstracted as 1.31/1.98, approaching theoretical estimations. This corresponds to a power conversion efficiency increasement of ~1.16 dB/~2.98 dB. To our knowledge, this is the first study on 2 micron wavelengths that proves the corresponding high efficiency power conversion property. Full article
(This article belongs to the Special Issue Microwave Photonics Signal Generation and Processing)
Show Figures

Figure 1

19 pages, 1873 KiB  
Article
Photo-Detectors Integrated with Resonant Tunneling Diodes
by Bruno Romeira, Luis M. Pessoa, Henrique M. Salgado, Charles N. Ironside and José M. L. Figueiredo
Sensors 2013, 13(7), 9464-9482; https://doi.org/10.3390/s130709464 - 22 Jul 2013
Cited by 50 | Viewed by 12586
Abstract
We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias [...] Read more.
We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD’s NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems. Full article
(This article belongs to the Special Issue Photodetectors)
Show Figures

Back to TopTop