Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = photo-biocidal activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3089 KB  
Article
Azobenzene Based Photo-Responsive Hydrogel: Synthesis, Self-Assembly, and Antimicrobial Activity
by Runmiao Yang, Wei Jin, Chingcheng Huang and Yuhai Liu
Gels 2022, 8(7), 414; https://doi.org/10.3390/gels8070414 - 1 Jul 2022
Cited by 17 | Viewed by 4490
Abstract
A new azobenzene-based symmetric amphiphile was synthesized and characterized using 1H NMR spectroscopy. Its self-assembly behavior as well as photo-responsive behavior in its solution and gel states were investigated. Such a compound can self-assemble into fiber mesophases in water solvent. After irradiation [...] Read more.
A new azobenzene-based symmetric amphiphile was synthesized and characterized using 1H NMR spectroscopy. Its self-assembly behavior as well as photo-responsive behavior in its solution and gel states were investigated. Such a compound can self-assemble into fiber mesophases in water solvent. After irradiation of the gels with UV light, the trans isomer of the compound rapidly photoisomerized to the cis isomer, which resulted in a rapid destruction of the gel. High temperature also caused a rapid drop in viscosity. To verify the antimicrobial activity of the hydrogel, live and death assays of human fibroblasts L929 properties were used for in vitro cell viability studies. The compound was converted to the terminal tertiary amine in a quaternary ammonium salt molecule by using hydrochloric acid. This azobenzene quaternary ammonium salt has a relatively better antimicrobial effect biocidal activity that was demonstrated when challenged against Escherichia coli on in vitro conditions. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Hydrogels)
Show Figures

Graphical abstract

20 pages, 4418 KB  
Article
Fabrication of Photoactive Electrospun Cellulose Acetate Nanofibers for Antibacterial Applications
by Tomasz Czapka, Angelika Winkler, Irena Maliszewska and Ryszard Kacprzyk
Energies 2021, 14(9), 2598; https://doi.org/10.3390/en14092598 - 1 May 2021
Cited by 23 | Viewed by 4073
Abstract
The aim of the study was to investigate the process of electrostatic fabrication of cellulose acetate (CA) nanofibers containing methylene blue (MB) as a photosensitizer. The electrical, physicochemical, and biocidal properties of the prepared material were given. CA nanofibers were prepared by electrospinning [...] Read more.
The aim of the study was to investigate the process of electrostatic fabrication of cellulose acetate (CA) nanofibers containing methylene blue (MB) as a photosensitizer. The electrical, physicochemical, and biocidal properties of the prepared material were given. CA nanofibers were prepared by electrospinning method using a solvent mixture of acetone and distilled water (9:1 vv−1) and different concentrations of CA (i.e., 10–21%). Additionally, methylene blue was implemented into the polymer solution with a CA concentration of 17% to obtain fibers with photo-bactericidal properties. Pure electrospun CA fibers were more uniform than fibers with MB (i.e., ribbon shape). Fiber diameters did not exceed 900 nm for the tested polymer solutions and flow rate below 1.0 mL h−1. The polymer properties (i.e., concentration, resistivity) and other parameters of the process (i.e., flow rate, an applied voltage) strongly influenced the size of the fibers. Plasma treatment of nanofibers resulted in reduced biofilm formation on their surface. The results of photo-bactericidal activity (i.e., up to 180 min) confirmed the high efficiency of inactivation of Staphylococcus aureus cells using fibers containing methylene blue (i.e., with and without plasma treatment). The most effective reduction in the number of biofilm cells was equal to 99.99 ± 0.3%. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Graphical abstract

25 pages, 7898 KB  
Article
Photocatalytic Decolorization and Biocidal Applications of Nonmetal Doped TiO2: Isotherm, Kinetic Modeling and In Silico Molecular Docking Studies
by Muhammad Saqib Khan, Jehanzeb Ali Shah, Muhammad Arshad, Sobia Ahsan Halim, Ajmal Khan, Ahson Jabbar Shaikh, Nadia Riaz, Asim Jahangir Khan, Muhammad Arfan, Muhammad Shahid, Arshid Pervez, Ahmed Al-Harrasi and Muhammad Bilal
Molecules 2020, 25(19), 4468; https://doi.org/10.3390/molecules25194468 - 29 Sep 2020
Cited by 24 | Viewed by 4478
Abstract
Textile dyes and microbial contamination of surface water bodies have been recognized as emerging quality concerns around the globe. The simultaneous resolve of such impurities can pave the route for an amicable technological solution. This study reports the photocatalytic performance and the biocidal [...] Read more.
Textile dyes and microbial contamination of surface water bodies have been recognized as emerging quality concerns around the globe. The simultaneous resolve of such impurities can pave the route for an amicable technological solution. This study reports the photocatalytic performance and the biocidal potential of nitrogen-doped TiO2 against reactive black 5 (RB5), a double azo dye and E. coli. Molecular docking was performed to identify and quantify the interactions of the TiO2 with β-lactamase enzyme and to predict the biocidal mechanism. The sol-gel technique was employed for the synthesis of different mol% nitrogen-doped TiO2. The synthesized photocatalysts were characterized using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) and diffuse reflectance spectroscopy (DRS). The effects of different synthesis and reaction parameters were studied. RB5 dye degradation was monitored by tracking shifts in the absorption spectrum and percent chemical oxygen demand (COD) removal. The best nanomaterial depicted 5.57 nm crystallite size, 49.54 m2 g−1 specific surface area, 11–40 nm particle size with spherical morphologies, and uniform distribution. The RB5 decolorization data fits well with the pseudo-first-order kinetic model, and the maximum monolayer coverage capacity for the Langmuir adsorption model was found to be 40 mg g−1 with Kads of 0.113 mg−1. The LH model yielded a higher coefficient KC (1.15 mg L−1 h−1) compared to the adsorption constant KLH (0.3084 L mg−1). 90% COD removal was achieved in 60 min of irradiation, confirmed by the disappearance of spectral peaks. The best-optimized photocatalysts showed a noticeable biocidal potential against human pathogenic strain E. coli in 150 min. The biocidal mechanism of best-optimized photocatalyst was predicted by molecular docking simulation against E. coli β-lactamase enzyme. The docking score (−7.6 kcal mol−1) and the binding interaction with the active site residues (Lys315, Thr316, and Glu272) of β-lactamase further confirmed that inhibition of β-lactamase could be a most probable mechanism of biocidal activity. Full article
(This article belongs to the Special Issue Environmental Applications of Polymers)
Show Figures

Figure 1

22 pages, 2340 KB  
Review
Isothiazolinone Biocides: Chemistry, Biological, and Toxicity Profiles
by Vânia Silva, Cátia Silva, Pedro Soares, E. Manuela Garrido, Fernanda Borges and Jorge Garrido
Molecules 2020, 25(4), 991; https://doi.org/10.3390/molecules25040991 - 23 Feb 2020
Cited by 176 | Viewed by 25770
Abstract
The importance of isothiazole and of compounds containing the isothiazole nucleus has been growing over the last few years. Isothiazolinones are used in cosmetic and as chemical additives for occupational and industrial usage due to their bacteriostatic and fungiostatic activity. Despite their effectiveness [...] Read more.
The importance of isothiazole and of compounds containing the isothiazole nucleus has been growing over the last few years. Isothiazolinones are used in cosmetic and as chemical additives for occupational and industrial usage due to their bacteriostatic and fungiostatic activity. Despite their effectiveness as biocides, isothiazolinones are strong sensitizers, producing skin irritations and allergies and may pose ecotoxicological hazards. Therefore, their use is restricted by EU legislation. Considering the relevance and importance of isothiazolinone biocides, the present review describes the state-of-the-art knowledge regarding their synthesis, antibacterial components, toxicity (including structure–activity–toxicity relationships) outlines, and (photo)chemical stability. Due to the increasing prevalence and impact of isothiazolinones in consumer’s health, analytical methods for the identification and determination of this type of biocides were also discussed. Full article
(This article belongs to the Special Issue Microbiocides Chemistry)
Show Figures

Figure 1

Back to TopTop