Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = phaC/phaZ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5063 KB  
Article
Investigating Polyhydroxyalkanoate Synthesis for Insights into Drug Resistance in Xanthomonas oryzae pv. oryzae
by Qingbiao Xie, Guangshu Lao, Yukai Fang, Xue Gao, Zheng Tan, Weiguo Miao and Pengfei Jin
Int. J. Mol. Sci. 2025, 26(4), 1601; https://doi.org/10.3390/ijms26041601 - 13 Feb 2025
Cited by 1 | Viewed by 1161
Abstract
Polyhydroxyalkanoates (PHAs), synthesized by Xanthomonas to endure adverse conditions, are primarily regulated by the critical genes phaC and phaZ. Poly-3-hydroxybutyrate (PHB), a common polyhydroxyalkanoate (PHA), has been implicated in metabolism, pathogenicity, and various physiological processes in Xanthomonas oryzae pv. oryzae (Xoo [...] Read more.
Polyhydroxyalkanoates (PHAs), synthesized by Xanthomonas to endure adverse conditions, are primarily regulated by the critical genes phaC and phaZ. Poly-3-hydroxybutyrate (PHB), a common polyhydroxyalkanoate (PHA), has been implicated in metabolism, pathogenicity, and various physiological processes in Xanthomonas oryzae pv. oryzae (Xoo). In this study, we investigated the effects of HN-2 using n-butanol extract (HN-2 n-butanol extract) derived from Bacillus velezensis on Xoo. The results showed that HN-2 n-butanol extract could induce PHB accumulation in Xoo, potentially via surfactin. Moreover, examination of drug resistance, pathogenicity, and morphological characteristics of Xoo revealed PHB played a significant role in the drug resistance, pathogenicity, membrane integrity, and growth rate of Xoo strains following the deletion of phaZ and phaC. The ∆phaZ strain was the most significant, with a growth rate reduced to 58.19% of the PXO99A at 36 h and an inhibition zone 57.46% larger than that of PXO99A by HN-2 n-butanol extract. Transmission electron microscopy further revealed blank spots in Xoo after treatment, with the fewest spots observed in ∆phaZ, indicating its impaired ability to repair and maintain membrane integrity. These findings offer valuable insights that could serve as a foundation for elucidating the mechanisms of drug resistance and future research on preventing Xoo-induced diseases. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

8 pages, 732 KB  
Communication
Physical Pretreatments Applied in Three Commercial Kits for the Extraction of High-Quality DNA from Activated Sewage Sludge
by Claudio Vásquez, Benjamín Leyton-Carcaman, Fernanda P. Cid-Alda, Iñaky Segovia, Fernanda Pinto and Michel Abanto
Int. J. Mol. Sci. 2023, 24(20), 15243; https://doi.org/10.3390/ijms242015243 - 17 Oct 2023
Cited by 4 | Viewed by 2627
Abstract
Obtaining sufficient and high-quality genomic DNA from sludge samples is a fundamental issue of feasibility and comparability in genomic studies of microbial diversity. Commercial kits for soil are often used for the extraction of gDNA from sludge samples due to the lack of [...] Read more.
Obtaining sufficient and high-quality genomic DNA from sludge samples is a fundamental issue of feasibility and comparability in genomic studies of microbial diversity. Commercial kits for soil are often used for the extraction of gDNA from sludge samples due to the lack of specific kits. However, the evaluation of the performance of commercial kits for sludge DNA extraction is scarce and optimization of these methods to obtain a high quantity and quality of DNA is necessary, especially for downstream genomic sequencing. Sequential batch reactors (SBRs) loaded with lignocellulosic biomass are used for the synthesis of renewable resources such as levulinic acid (LA), adipic acid (AA), and polyhydroxyalkanoates (PHAs), and the biochemical synthesis of these compounds is conducted through the inoculation of microbes present in the residual activated sludge (AS) obtained from a municipal wastewater treatment plant. To characterize these microbes, the extraction of DNA from residual sewage sludge was conducted with three different commercial kits: Nucleospin® Soil from Macherey-Nagel, DNEasy® PowerSoil® from Qiagen, and E.Z.N.A.® Plant DNA Kit from Omega BIO-TEK. Nevertheless, to obtain the highest load and quality of DNA for next-generation sequencing (NGS) analysis, different pretreatments and different combinations of these pretreatments were used. The pretreatments considered were an ultrasonic bath and a temperature of 80 °C, together and separately with different incubation time periods of 30, 60, and 90 min. The results obtained suggest a significant improvement in the efficiency and quality of DNA extraction with the three commercial extraction kits when used together with the ultrasonic bath and 80 °C for 60 min. Here, we were able to prove that physical pretreatments are a viable alternative to chemical lysis for DNA extraction from complex samples such as sludge. Full article
Show Figures

Figure 1

15 pages, 2750 KB  
Article
Enhancing Production of Medium-Chain-Length Polyhydroxyalkanoates from Pseudomonas sp. SG4502 by tac Enhancer Insertion
by Linxin Song, Ming Wang, Dengbin Yu, Yu Li, Hongwen Yu and Xuerong Han
Polymers 2023, 15(10), 2290; https://doi.org/10.3390/polym15102290 - 12 May 2023
Cited by 5 | Viewed by 2683
Abstract
Pseudomonas sp. SG4502 screened from biodiesel fuel by-products can synthesize medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glycerol as a substrate. It contains a typical PHA class II synthase gene cluster. This study revealed two genetic engineering methods for improving the mcl-PHA accumulation capacity of Pseudomonas [...] Read more.
Pseudomonas sp. SG4502 screened from biodiesel fuel by-products can synthesize medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glycerol as a substrate. It contains a typical PHA class II synthase gene cluster. This study revealed two genetic engineering methods for improving the mcl-PHA accumulation capacity of Pseudomonas sp. SG4502. One way was to knock out the PHA-depolymerase phaZ gene, the other way was to insert a tac enhancer into the upstream of the phaC1/phaC2 genes. Yields of mcl-PHAs produced from 1% sodium octanoate by +(tac-phaC2) and ∆phaZ strains were enhanced by 53.8% and 23.1%, respectively, compared with those produced by the wild-type strain. The increase in mcl-PHA yield from +(tac-phaC2) and ∆phaZ was due to the transcriptional level of the phaC2 and phaZ genes, as determined by RT-qPCR (the carbon source was sodium octanoate). 1H-NMR results showed that the synthesized products contained 3-hydroxyoctanoic acid (3HO), 3-hydroxydecanoic acid (3HD) and 3-hydroxydodecanoic acid (3HDD) units, which is consistent with those synthesized by the wild-type strain. The size-exclusion chromatography by GPC of mcl-PHAs from the (∆phaZ), +(tac-phaC1) and +(tac-phaC2) strains were 2.67, 2.52 and 2.60, respectively, all of which were lower than that of the wild-type strain (4.56). DSC analysis showed that the melting temperature of mcl-PHAs produced by recombinant strains ranged from 60 °C to 65 °C, which was lower than that of the wild-type strain. Finally, TG analysis showed that the decomposition temperature of mcl-PHAs synthesized by the (∆phaZ), +(tac-phaC1) and +(tac-phaC2) strains was 8.4 °C, 14.7 °C and 10.1 °C higher than that of the wild-type strain, respectively. Full article
Show Figures

Figure 1

14 pages, 2709 KB  
Article
Molecular Profiling and Optimization Studies for Growth and PHB Production Conditions in Rhodobacter sphaeroides
by Yu Rim Lee, Hana Nur Fitriana, Soo Youn Lee, Min-Sik Kim, Myounghoon Moon, Won-Heong Lee, Jin-Suk Lee and Sangmin Lee
Energies 2020, 13(23), 6471; https://doi.org/10.3390/en13236471 - 7 Dec 2020
Cited by 21 | Viewed by 5628
Abstract
In the recent climate change regime, industrial demand for renewable materials to replace petroleum-derived polymers continues to rise. Of particular interest is polyhydroxybutyrate (PHB) as a substitute for polypropylene. Accumulating evidence indicates that PHB is highly produced as a carbon storage material in [...] Read more.
In the recent climate change regime, industrial demand for renewable materials to replace petroleum-derived polymers continues to rise. Of particular interest is polyhydroxybutyrate (PHB) as a substitute for polypropylene. Accumulating evidence indicates that PHB is highly produced as a carbon storage material in various microorganisms. The effects of growth conditions on PHB production have been widely studied in chemolithotrophs, particularly in Rhodobacter. However, the results on PHB production in Rhodobacter have been somewhat inconsistent due to different strains and experimental conditions, and it is currently unclear how diverse environmental factors are linked with PHB production. Here, we report optimized growth conditions for PHB production and show that the growth conditions are closely related to reactive oxygen species (ROS) regulation. PHB accumulates in cells up to approximately 50% at the highest level under dark-aerobic conditions as opposed to light aerobic/anaerobic conditions. According to the time-course, PHB contents increased at 48 h and then gradually decreased. When observing the effect of temperature and medium composition on PHB production, 30 °C and a carbon/nitrogen ratio of 9:1 or more were found to be most effective. Among PHB biosynthetic genes, PhaA and PhaB are highly correlated with PHB production, whereas PhaC and PhaZ showed little change in overall expression levels. We found that, while the amount of hydrogen peroxide in cells under dark conditions was relatively low compared to the light conditions, peroxidase activities and expression levels of antioxidant-related genes were high. These observations suggest optimal culture conditions for growth and PHB production and the importance of ROS-scavenging signaling with regard to PHB production. Full article
(This article belongs to the Special Issue Bioproducts & Environmental Sustainability)
Show Figures

Figure 1

18 pages, 2785 KB  
Article
Polyhydroxyalkanoate (PHA) Polymer Accumulation and pha Gene Expression in Phenazine (phz-) and Pyrrolnitrin (prn-) Defective Mutants of Pseudomonas chlororaphis PA23
by Parveen K. Sharma, Riffat I. Munir, Jocelyn Plouffe, Nidhi Shah, Teresa De Kievit and David B. Levin
Polymers 2018, 10(11), 1203; https://doi.org/10.3390/polym10111203 - 27 Oct 2018
Cited by 17 | Viewed by 7557
Abstract
Pseudomonas chlororaphis PA23 was isolated from the rhizosphere of soybeans and identified as a biocontrol bacterium against Sclerotinia sclerotiorum, a fungal plant pathogen. This bacterium produces a number of secondary metabolites, including phenazine-1-carboxylic acid, 2-hydroxyphenazine, pyrrolnitrin (PRN), hydrogen cyanide, proteases, lipases [...] Read more.
Pseudomonas chlororaphis PA23 was isolated from the rhizosphere of soybeans and identified as a biocontrol bacterium against Sclerotinia sclerotiorum, a fungal plant pathogen. This bacterium produces a number of secondary metabolites, including phenazine-1-carboxylic acid, 2-hydroxyphenazine, pyrrolnitrin (PRN), hydrogen cyanide, proteases, lipases and siderophores. It also synthesizes and accumulates polyhydroxyalkanoate (PHA) polymers as carbon and energy storage compounds under nutrient-limited conditions. Pseudomonads like P. chlororaphis metabolize glucose via the Entner-Doudoroff and Pentose Phosphate pathways, which provide precursors for phenazine production. Mutants defective in phenazine (PHZ; PA23-63), PRN (PA23-8), or both (PA23-63-1) accumulated higher concentrations of PHAs than the wild-type strain (PA23) when cultured in Ramsay’s Minimal Medium with glucose or octanoic acid as the carbon source. Expression levels of six pha genes, phaC1, phaZ, phaC2, phaD, phaF, and phaI, were compared with wild type PA23 by quantitative real time polymerase chain reaction (qPCR). The qPCR studies indicated that there was no change in levels of transcription of the PHA synthase genes phaC1 and phaC2 in the phz- (PA23-63) and phz- prn- (PA23-63-1) mutants in glucose medium. There was a significant increase in expression of phaC2 in octanoate medium. Transcription of phaD, phaF and phaI increased significantly in the phz- prn- (PA23-63-1) mutant. Mutations in regulatory genes like gacS, rpoS, and relA/spoT, which affect PHZ and PRN production, also resulted in altered gene expression. The expression of phaC1, phaC2, phaF, and phaI genes was down-regulated significantly in gacS and rpoS mutants. Thus, it appears that PHZ, PRN, and PHA production is regulated by common mechanisms. Higher PHA production in the phz- (PA23-63), prn- (PA23-8), and phz- prn- (PA23-63-1) mutants in octanoic medium could be correlated with higher expression of phaC2. Further, the greater PHA production observed in the phz- and prn- mutants was not due to increased transcription of PHA synthase genes in glucose medium, but due to more accessibility of carbon substrates and reducing power, which were otherwise used for the synthesis of PHZ and PRN. Full article
(This article belongs to the Special Issue Recent Advances in Bioplastics)
Show Figures

Graphical abstract

Back to TopTop