Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = perovskite mini-module

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5777 KB  
Article
Characterization and Degradation of Perovskite Mini-Modules
by R. Ebner, A. Mittal, G. Ujvari, M. Hadjipanayi, V. Paraskeva, G. E. Georghiou, A. Hadipour, A. Aguirre and T. Aernouts
Inorganics 2024, 12(8), 219; https://doi.org/10.3390/inorganics12080219 - 15 Aug 2024
Viewed by 1907
Abstract
Organic–inorganic hybrid metal halide perovskites are poised to revolutionize the next generation of photovoltaics with their exceptional optoelectronic properties and compatibility with low-cost and large-scale fabrication methods. Since perovskite tends to degrade over short time intervals due to various parameters (oxygen, humidity, light, [...] Read more.
Organic–inorganic hybrid metal halide perovskites are poised to revolutionize the next generation of photovoltaics with their exceptional optoelectronic properties and compatibility with low-cost and large-scale fabrication methods. Since perovskite tends to degrade over short time intervals due to various parameters (oxygen, humidity, light, and temperature), advanced characterization methods are needed to understand their degradation mechanisms. In this context, investigation of the electrical and optoelectronic properties of several perovskite mini-modules was performed by means of photo- and electroluminescence imaging as well as Dark Lock-In Thermography methods. Current–voltage curves at periodic time intervals and External Quantum Efficiency measurements were implemented alongside other measurements to reveal correlations between the electrical and radiative properties of the solar cells. The different imaging techniques used in this study reveal the changes in radiative emission processes and how those are correlated with performance. Alongside the indoor optoelectronic characterization of perovskite reference samples, the outdoor monitoring of two perovskite modules of the same structure for 23 weeks is reported. Significant performance degradation is presented outdoors from the first week of testing for both samples under test. The evolution of the major electrical characteristics of the mini-modules and the diurnal changes were studied in detail. Finally, dark storage recovery studies after outdoor exposure were implemented to investigate changes in the major electrical parameters. Full article
(This article belongs to the Special Issue The State of the Art of Research on Perovskites Materials)
Show Figures

Figure 1

13 pages, 2367 KB  
Review
Research Progress on Rashba Effect in Two-Dimensional Organic–Inorganic Hybrid Lead Halide Perovskites
by Junhong Guo, Jinlei Zhang, Yunsong Di and Zhixing Gan
Nanomaterials 2024, 14(8), 683; https://doi.org/10.3390/nano14080683 - 16 Apr 2024
Cited by 5 | Viewed by 3497
Abstract
The Rashba effect appears in the semiconductors with an inversion–asymmetric structure and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby improving the performance [...] Read more.
The Rashba effect appears in the semiconductors with an inversion–asymmetric structure and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby improving the performance of photoelectric devices, but also used to expand the applications of semiconductors in spintronics. In this mini-review, recent research progress on the Rashba effect of two-dimensional (2D) organic–inorganic hybrid perovskites is summarized. The origin and magnitude of Rashba spin splitting, layer-dependent Rashba band splitting of 2D perovskites, the Rashba effect in 2D perovskite quantum dots, a 2D/3D perovskite composite, and 2D-perovskites-based van der Waals heterostructures are discussed. Moreover, applications of the 2D Rashba effect in circularly polarized light detection are reviewed. Finally, future research to modulate the Rashba strength in 2D perovskites is prospected, which is conceived to promote the optoelectronic and spintronic applications of 2D perovskites. Full article
(This article belongs to the Special Issue Photofunctional Nanomaterials and Nanostructures)
Show Figures

Figure 1

14 pages, 2592 KB  
Article
Selective Spin Dewetting for Perovskite Solar Modules Fabricated on Engineered Au/ITO Substrates
by Son Singh, Rahim Abdur, Md. Abdul Kuddus Sheikh, Bhabani Sankar Swain, Jindong Song, Jae-Hun Kim, Ho-Seok Nam, Sung-Hyon Kim, Hyunseung Lee and Jaegab Lee
Nanomaterials 2024, 14(5), 424; https://doi.org/10.3390/nano14050424 - 26 Feb 2024
Viewed by 2934
Abstract
We introduce a novel method for fabricating perovskite solar modules using selective spin-coating on various Au/ITO patterned substrates. These patterns were engineered for two purposes: (1) to enhance selectivity of monolayers primarily self-assembling on the Au electrode, and (2) to enable seamless interconnection [...] Read more.
We introduce a novel method for fabricating perovskite solar modules using selective spin-coating on various Au/ITO patterned substrates. These patterns were engineered for two purposes: (1) to enhance selectivity of monolayers primarily self-assembling on the Au electrode, and (2) to enable seamless interconnection between cells through direct contact of the top electrode and the hydrophobic Au connection electrode. Utilizing SAMs-treated Au/ITO, we achieved sequential selective deposition of the electron transport layer (ETL) and the perovskite layer on the hydrophilic amino-terminated ITO, while the hole transport layer (HTL) was deposited on the hydrophobic CH3-terminated Au connection electrodes. Importantly, our approach had a negligible impact on the series resistance of the solar cells, as evidenced by the measured specific contact resistivity of the multilayers. A significant outcome was the production of a six-cell series-connected solar module with a notable average PCE of 8.32%, providing a viable alternative to the conventional laser scribing technique. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

15 pages, 2658 KB  
Article
High-Performance Perovskite Solar Cells and Modules Fabricated by Slot-Die Coating with Nontoxic Solvents
by Chia-Feng Li, Hung-Che Huang, Shih-Han Huang, Yu-Hung Hsiao, Priyanka Chaudhary, Chun-Yu Chang, Feng-Yu Tsai, Wei-Fang Su and Yu-Ching Huang
Nanomaterials 2023, 13(11), 1760; https://doi.org/10.3390/nano13111760 - 29 May 2023
Cited by 11 | Viewed by 3906
Abstract
Energy shortage has become a global issue in the twenty-firt century, as energy consumption grows at an alarming rate as the fossil fuel supply exhausts. Perovskite solar cells (PSCs) are a promising photovoltaic technology that has grown quickly in recent years. Its power [...] Read more.
Energy shortage has become a global issue in the twenty-firt century, as energy consumption grows at an alarming rate as the fossil fuel supply exhausts. Perovskite solar cells (PSCs) are a promising photovoltaic technology that has grown quickly in recent years. Its power conversion efficiency (PCE) is comparable to that of traditional silicon-based solar cells, and scale-up costs can be substantially reduced due to its utilization of solution-processable fabrication. Nevertheless, most PSCs research uses hazardous solvents, such as dimethylformamide (DMF) and chlorobenzene (CB), which are not suitable for large-scale ambient operations and industrial production. In this study, we have successfully deposited all of the layers of PSCs, except the top metal electrode, under ambient conditions using a slot-die coating process and nontoxic solvents. The fully slot-die coated PSCs exhibited PCEs of 13.86% and 13.54% in a single device (0.09 cm2) and mini-module (0.75 cm2), respectively. Full article
Show Figures

Figure 1

18 pages, 5535 KB  
Article
Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives
by Vasiliki Paraskeva, Maria Hadjipanayi, Matthew Norton, Aranzazu Aguirre, Afshin Hadipour, Wenya Song, Tommaso Fontanot, Silke Christiansen, Rita Ebner and George E. Georghiou
Energies 2023, 16(6), 2608; https://doi.org/10.3390/en16062608 - 9 Mar 2023
Cited by 10 | Viewed by 2963
Abstract
The outdoor performance monitoring of perovskite modules over 16 weeks is reported. Two different types of active perovskite layers were studied: one type contained formamidinium chloride (FACl) halide additives and the other contained no additives with the main purpose to investigate performance trends [...] Read more.
The outdoor performance monitoring of perovskite modules over 16 weeks is reported. Two different types of active perovskite layers were studied: one type contained formamidinium chloride (FACl) halide additives and the other contained no additives with the main purpose to investigate performance trends during the outdoor exposure of those type of devices. Long-term side-by-side outdoor testing of devices with and without halide additives was not implemented in the past and merits investigation in order to determine the impact of additives on perovskite performance and stability. Although the two types of modules displayed similar initial outdoor performance characteristics, their outdoor performance evolution differed. Different degradation rates between the modules with and without additives were obtained just after field installation. In particular, the modules with additives exhibited higher performance degradation under open-circuit loading conditions between current-voltage (IV) scans. Long-term monitoring of both modules recorded a reduction of the efficiency over the course of the day with subsequent recovery overnight and in many cases during the day. The relative values of performance degradation and overnight recovery were calculated over the timespan of outdoor testing and indicated dominant normalized diurnal performance degradation in one type of modules (without FACl additives) in the range between 15–20% and in the other type of modules (with additives) 5–10%. The dominant normalized performance recovery values found were 25–30% and 5–10%, respectively. Finally, dark lock-in thermography (DLIT) and Raman studies were performed on the exposed devices and revealed differences in hotspot evolution and vibrational modes between the different types of module. Full article
Show Figures

Figure 1

8 pages, 1515 KB  
Article
Stability Assessment of p-i-n Perovskite Photovoltaic Mini-Modules Utilizing Different Top Metal Electrodes
by Janardan Dagar, Gopinath Paramasivam, Carola Klimm, Markus Fenske, Christof Schultz, Rutger Schlatmann, Bert Stegemann and Eva Unger
Micromachines 2021, 12(4), 423; https://doi.org/10.3390/mi12040423 - 13 Apr 2021
Cited by 4 | Viewed by 4024
Abstract
Long-term stability is one of the major challenges for p-i-n type perovskite solar modules (PSMs). Here, we demonstrate the fabrication of fully laser-patterned series interconnected p-i-n perovskite mini-modules, in which either single Cu or Ag layers are compared with Cu/Au metal-bilayer top electrodes. [...] Read more.
Long-term stability is one of the major challenges for p-i-n type perovskite solar modules (PSMs). Here, we demonstrate the fabrication of fully laser-patterned series interconnected p-i-n perovskite mini-modules, in which either single Cu or Ag layers are compared with Cu/Au metal-bilayer top electrodes. According to the scanning electron microscopy measurements, we found that Cu or Ag top electrodes often exhibit flaking of the metal upon P3 (top contact removal) laser patterning. For Cu/Au bilayer top electrodes, metal flaking may cause intermittent short-circuits between interconnected sub-cells during operation, resulting in fluctuations in the maximum power point (MPP). Here, we demonstrate Cu/Au metal-bilayer-based PSMs with an efficiency of 18.9% on an active area of 2.2 cm2 under continuous 1-sun illumination. This work highlights the importance of optimizing the top-contact composition to tackle the operational stability of mini-modules, and could help to improve the feasibility of large-area module deployment for the commercialization of perovskite photovoltaics. Full article
Show Figures

Figure 1

13 pages, 2632 KB  
Article
Upscaling Inverted Perovskite Solar Cells: Optimization of Laser Scribing for Highly Efficient Mini-Modules
by Francesco Di Giacomo, Luigi A. Castriotta, Felix U. Kosasih, Diego Di Girolamo, Caterina Ducati and Aldo Di Carlo
Micromachines 2020, 11(12), 1127; https://doi.org/10.3390/mi11121127 - 20 Dec 2020
Cited by 58 | Viewed by 14016
Abstract
The upscaling of perovskite solar cells is one of the challenges that must be addressed to pave the way toward the commercial development of this technology. As for other thin-film photovoltaic technologies, upscaling requires the fabrication of modules composed of series-connected cells. In [...] Read more.
The upscaling of perovskite solar cells is one of the challenges that must be addressed to pave the way toward the commercial development of this technology. As for other thin-film photovoltaic technologies, upscaling requires the fabrication of modules composed of series-connected cells. In this work we demonstrate for the first time the interconnection of inverted modules with NiOx using a UV ns laser, obtaining a 10.2 cm2 minimodule with a 15.9% efficiency on the active area, the highest for a NiOx based perovskite module. We use optical microscopy, energy-dispersive X-ray spectroscopy, and transfer length measurement to optimize the interconnection. The results are implemented in a complete electrical simulation of the cell-to-module losses to evaluate the experimental results and to provide an outlook on further development of single junction and multijunction perovskite modules. Full article
Show Figures

Figure 1

Back to TopTop