Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = periodic pile row

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 26520 KiB  
Article
A Study on the Impact of Different Delay Times on Rock Mass Throwing and Movement Characteristics Based on the FEM–SPH Method
by Guoqiang Wang, Hui Chen and Jingkun Zhao
Appl. Sci. 2024, 14(23), 11468; https://doi.org/10.3390/app142311468 - 9 Dec 2024
Viewed by 1091
Abstract
Burst morphology is a crucial indicator for evaluating the effectiveness of blasting, as it directly reflects the actual state of the blasting results. The results of rock displacement following blasting partially reflect the effectiveness of throw blasting, while the rock ejection process serves [...] Read more.
Burst morphology is a crucial indicator for evaluating the effectiveness of blasting, as it directly reflects the actual state of the blasting results. The results of rock displacement following blasting partially reflect the effectiveness of throw blasting, while the rock ejection process serves as the macroscopic manifestation of the blasting method. To accurately assess the impact of different delay times on burst formation, this study addressed the issues of rock movement and ejection in underground blasting. Using three-dimensional modeling, we constructed a FEM–SPH model and utilized LS-DYNA numerical simulation software to investigate the movement patterns of rock in precise delayed blasting scenarios underground. This study explored the spatiotemporal evolution characteristics of rock movement post-blasting. Digital electronic detonators were used to set precise inter-row delay times of 25 ms, 50 ms, and 75 ms. The results revealed that the ejection distance of blasted rock in underground mining increased with longer inter-row delay times, while the slope angle of the blasted muck pile decreased as the delay time increased. Furthermore, at a micro level, the study found that a 75 ms delay created new free surfaces, providing effective compensation space for subsequent blasts, thereby improving blasting outcomes. Analysis of the 25 ms and 50 ms delay periods indicated a clamping effect on rock movement. Field comparisons of blasting results were conducted to validate the influence of precise delay times on the movement patterns and spatiotemporal evolution characteristics of blasted rock. Full article
Show Figures

Figure 1

22 pages, 7013 KiB  
Article
In Situ Test and Numerical Analysis of the Subway-Induced Vibration Influence in Historical and Cultural Reserves
by Jie Su, Xingyi Liu, Yuzhe Wang, Xingyu Lu, Xiaokai Niu and Jiangtao Zhao
Sensors 2024, 24(9), 2860; https://doi.org/10.3390/s24092860 - 30 Apr 2024
Cited by 2 | Viewed by 1107
Abstract
Although the rapid expansion of urban rail transit offers convenience to citizens, the issue of subway vibration cannot be overlooked. This study investigates the spatial distribution characteristics of vibration in the Fayuan Temple historic and cultural reserve. It involves using a V001 magnetoelectric [...] Read more.
Although the rapid expansion of urban rail transit offers convenience to citizens, the issue of subway vibration cannot be overlooked. This study investigates the spatial distribution characteristics of vibration in the Fayuan Temple historic and cultural reserve. It involves using a V001 magnetoelectric acceleration sensor capable of monitoring low amplitudes with a sensitivity of 0.298 V/(m/s2), a measuring range of up to 20 m/s2, and a frequency range span from 0.5 to 100 Hz for in situ testing, analyzing the law of vibration propagation in this area, evaluating the impact on buildings, and determining the vibration reduction scheme. The reserve is divided into three zones based on the vertical vibration level measured during the in situ test as follows: severely excessive, generally excessive, and non-excessive vibration. Furthermore, the research develops a dynamic coupling model of vehicle–track–tunnel–stratum–structure to verify the damping effect of the wire spring floating plate track and periodic pile row. It compares the characteristics of three vibration reduction schemes, namely, internal vibration reduction reconstruction, periodic pile row, and anti-vibration reinforcement or reconstruction of buildings, proposing a comprehensive solution. Considering the construction conditions, difficulty, cost, and other factors, a periodic pile row is recommended as the primary treatment measure. If necessary, anti-vibration reinforcement or reconstruction of buildings can serve as supplemental measures. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

20 pages, 8520 KiB  
Article
Method for Controlling Full-Frequency Band Environment Vibration by Coordinating Metro Vibration Sources and Propagation Paths
by Xinyu Tan, Bolong Jiang, Chunyu Qi, Meng Ma, Jizhao Liu, Wenlin Hu and Shaolin Wang
Appl. Sci. 2023, 13(24), 12979; https://doi.org/10.3390/app132412979 - 5 Dec 2023
Cited by 1 | Viewed by 1576
Abstract
Floating slab tracks (FSTs) are used to reduce the impact of vibration on precision instruments and historical relics along metro lines; however, ground vibration is universally amplified at the natural frequency of the tracks. In this study, a full-frequency control method that considers [...] Read more.
Floating slab tracks (FSTs) are used to reduce the impact of vibration on precision instruments and historical relics along metro lines; however, ground vibration is universally amplified at the natural frequency of the tracks. In this study, a full-frequency control method that considers frequency matching for environmental vibrations, in combination with metro vibration sources and propagation paths, was developed based on the bandgap theory of the periodic structure. The effectiveness of this method was analysed by establishing a three-dimensional metro train–FST coupled model and a finite element analysis model of track bed–tunnel–soil–row piles. The results show that ground vibration can be reduced by approximately 3–5 dB at the natural frequency of the FST by adjusting the bandgap range of the periodic piles to 7–9 Hz, eliminating the adverse effect of vibration amplification at the natural frequency of the FSTs. The proposed control method shows good vibration control effects and can effectively minimise ground vibration in the full-frequency range. Full article
Show Figures

Figure 1

19 pages, 7077 KiB  
Article
Theoretical and Numerical Study on the Pile Barrier in Attenuating Seismic Surface Waves
by Chunfeng Zhao, Chao Zeng, Yinzhi Wang, Wen Bai and Junwu Dai
Buildings 2022, 12(10), 1488; https://doi.org/10.3390/buildings12101488 - 20 Sep 2022
Cited by 8 | Viewed by 2588
Abstract
The purpose of this study is to investigate the attenuation effect of the pile barrier in blocking seismic surface waves by using theoretical and numerical methods. First, we derive the dispersion characteristics of pile barriers embedded in soil from the perspective of periodicity [...] Read more.
The purpose of this study is to investigate the attenuation effect of the pile barrier in blocking seismic surface waves by using theoretical and numerical methods. First, we derive the dispersion characteristics of pile barriers embedded in soil from the perspective of periodicity theory to explain that such periodic barriers can attenuate seismic surface waves when the main frequencies fall into the band gaps of the pile barrier. Second, the dispersion characteristics of periodic barriers composed of different inclusions are discussed, and it is suggested preliminarily that scatters with low stiffness and low density are more conductive to mitigate low-frequency surface waves. Third, a three-dimensional transmission calculation model is also developed to illustrate that the attenuation zone of a finite number of piles is consistent with the surface wave band gap. Finally, transient analysis of the periodic pile barriers is performed to validate the block effects on seismic surface waves. The numerical results show that the frequency band gaps of multi-row pile barriers are in accordance with the frequency band gaps of the surface wave in theory, which can greatly mitigate surface ground vibration. The pile spacing, number of piles, and pile length are the key parameters that can affect the width of attenuation zones of the periodic barriers by an appropriate design. Full article
(This article belongs to the Special Issue Advanced Studies of Risk Resistant Building Structures)
Show Figures

Figure 1

Back to TopTop