Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = parity of Majorana fermions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 279 KiB  
Article
Neutron Oscillations and the Parity Doubling Theorem
by Kazuo Fujikawa and Anca Tureanu
Symmetry 2021, 13(11), 2202; https://doi.org/10.3390/sym13112202 - 18 Nov 2021
Viewed by 1765
Abstract
We review several aspects of parity and CP violation in the framework of neutron-antineutron oscillations. We focus on the parity doubling theorem, which provides a criterion for neutron oscillation in the general theory with ΔB=2 baryon number-violating interactions. We prove [...] Read more.
We review several aspects of parity and CP violation in the framework of neutron-antineutron oscillations. We focus on the parity doubling theorem, which provides a criterion for neutron oscillation in the general theory with ΔB=2 baryon number-violating interactions. We prove by explicit calculations that the violation of the conventional parity symmetry with P2=1 is the necessary condition for neutron oscillations to happen. While the CP violation is not manifest in the oscillation, it is nevertheless intrinsic to the system, and it is transferred, by the mixing matrix, to the neutron interactions and potentially observable as a contribution to the electric dipole moment. Full article
27 pages, 4175 KiB  
Review
Symmetries and Their Breaking in the Fundamental Laws of Physics
by Jose Bernabeu
Symmetry 2020, 12(8), 1316; https://doi.org/10.3390/sym12081316 - 6 Aug 2020
Cited by 3 | Viewed by 4791
Abstract
Symmetries in the Physical Laws of Nature lead to observable effects. Beyond the regularities and conserved magnitudes, the last few decades in particle physics have seen the identification of symmetries, and their well-defined breaking, as the guiding principle for the elementary constituents of [...] Read more.
Symmetries in the Physical Laws of Nature lead to observable effects. Beyond the regularities and conserved magnitudes, the last few decades in particle physics have seen the identification of symmetries, and their well-defined breaking, as the guiding principle for the elementary constituents of matter and their interactions. Flavour SU(3) symmetry of hadrons led to the Quark Model and the antisymmetric requirement under exchange of identical fermions led to the colour degree of freedom. Colour became the generating charge for flavour-independent strong interactions of quarks and gluons in the exact colour SU(3) local gauge symmetry. Parity Violation in weak interactions led us to consider the chiral fields of fermions as the objects with definite transformation properties under the weak isospin SU(2) gauge group of the Unifying Electro-Weak SU(2) × U(1) symmetry, which predicted novel weak neutral current interactions. CP-Violation led to three families of quarks opening the field of Flavour Physics. Time-reversal violation has recently been observed with entangled neutral mesons, compatible with CPT-invariance. The cancellation of gauge anomalies, which would invalidate the gauge symmetry of the quantum field theory, led to Quark–Lepton Symmetry. Neutrinos were postulated in order to save the conservation laws of energy and angular momentum in nuclear beta decay. After the ups and downs of their mass, neutrino oscillations were discovered in 1998, opening a new era about their origin of mass, mixing, discrete symmetries and the possibility of global lepton-number violation through Majorana mass terms and Leptogenesis as the source of the matter–antimatter asymmetry in the universe. The experimental discovery of quarks and leptons and the mediators of their interactions, with physical observables in spectacular agreement with this Standard Theory, is the triumph of Symmetries. The gauge symmetry is exact only when the particles are massless. One needs a subtle breaking of the symmetry, providing the origin of mass without affecting the excellent description of the interactions. This is the Brout–Englert–Higgs Mechanism, which produces the Higgs Boson as a remnant, discovered at CERN in 2012. Open present problems are addressed with by searching the New Physics Beyond-the-Standard-Model. Full article
(This article belongs to the Special Issue Symmetry in Atomic, Nuclear and Particle Physics)
Show Figures

Figure 1

Back to TopTop