Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = parallel open-end winding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5128 KB  
Article
Enhanced Speed Characteristics of High-Torque-Density BLDC Motor for Robot Applications Using Parallel Open-End Winding Configuration
by Junghwan Park, Handdeut Chang and Chaeeun Hong
Actuators 2025, 14(5), 220; https://doi.org/10.3390/act14050220 - 29 Apr 2025
Viewed by 2752
Abstract
High-torque-density motors are essential in humanoid, wearable, and rehabilitation robots due to their ability to minimize gear ratios, improve back-drivability, and support compact joint design. However, their inherently high back-EMF limits speed performance, and safety regulations often constrain supply voltages to below 50 [...] Read more.
High-torque-density motors are essential in humanoid, wearable, and rehabilitation robots due to their ability to minimize gear ratios, improve back-drivability, and support compact joint design. However, their inherently high back-EMF limits speed performance, and safety regulations often constrain supply voltages to below 50 V in human-interactive environments. To overcome these limitations, this study introduces a novel winding strategy called parallel open-end winding (POEW), which combines the benefits of two individual approaches: Parallel Connected Winding (PCW) and Open-End Winding (OEW). PCW reduces phase resistance and inductance, thereby mitigating voltage drop and back-EMF, while OEW eliminates the neutral point, allowing full-phase voltage utilization. Experimental results show that the POEW configuration achieves a 3.5-fold increase in maximum speed compared to the conventional Series-Connected Winding (SCW), without altering the rotor or stator structure. Torque constant measurements confirm that all proposed configurations maintain torque output with minimal variation. Although the motor constant slightly decreases due to the higher current in parallel paths, the significant speed enhancement under low-voltage conditions demonstrates the practicality and effectiveness of POEW for advanced robotic applications requiring both high torque and speed. Full article
(This article belongs to the Special Issue Actuation and Sensing of Intelligent Soft Robots)
Show Figures

Figure 1

18 pages, 7275 KB  
Article
An Improved Sensorless Nonlinear Control Based on SC-MRAS Estimator of Open-End Winding Five-Phase Induction Motor Fed by Dual NPC Inverter: Hardware-in-the-Loop Implementation
by Saad Khadar, Almoataz Y. Abdelaziz, Zakaria M. Salem Elbarbary and Mahmoud A. Mossa
Machines 2023, 11(4), 469; https://doi.org/10.3390/machines11040469 - 11 Apr 2023
Cited by 5 | Viewed by 2298
Abstract
This paper introduces a sensorless nonlinear control scheme based on feedback linearization control (FLC) of an open-end winding five-phase induction motor (OeW-5PIM) topology fed by a dual neutral point clamped (NPC) inverter. The suggested sensorless control is combined with the sliding mode (SM) [...] Read more.
This paper introduces a sensorless nonlinear control scheme based on feedback linearization control (FLC) of an open-end winding five-phase induction motor (OeW-5PIM) topology fed by a dual neutral point clamped (NPC) inverter. The suggested sensorless control is combined with the sliding mode (SM) controller to improve the dynamic performance (i.e., rising time, overshoot, etc.) of the studied motor. Furthermore, a stator-current-based model reference adaptive system (SC-MRAS) estimator is designed for the estimation of the rotor flux and the motor speed. In parallel, to enhance the robustness of the designed sensorless control against motor parameter changes, an adaptive estimation method is suggested to estimate the rotor and stator resistances during low-speed ranges. The estimation method of motor resistances is associated with the suggested sensorless control to further improve the speed estimation accuracy and minimize the speed estimation error. Finally, the effectiveness and correctness of the suggested control with the examined estimators are validated in real-time implementation using a hardware-in-the-loop (HIL) based on the dSpace 1103 board. Full article
Show Figures

Figure 1

21 pages, 3967 KB  
Article
Research on the Filters for Dual-Inverter Fed Open-End Winding Transformer Topology in Photovoltaic Grid-Tied Applications
by Baoji Wang, Xing Zhang, Chao Song and Renxian Cao
Energies 2019, 12(12), 2338; https://doi.org/10.3390/en12122338 - 18 Jun 2019
Cited by 10 | Viewed by 5208
Abstract
Owing to the necessity of the transformer for the multi-parallel inverters connected to the medium-voltage (MV) grid, the conventional multi-parallel inverter topology can be reconfigured to the dual-inverter fed open-end winding transformer (DI-OEWT) topology to obtain lower output voltage harmonics, which can reduce [...] Read more.
Owing to the necessity of the transformer for the multi-parallel inverters connected to the medium-voltage (MV) grid, the conventional multi-parallel inverter topology can be reconfigured to the dual-inverter fed open-end winding transformer (DI-OEWT) topology to obtain lower output voltage harmonics, which can reduce the requirement of the filter inductance. However, due to the special structure of the DI-OEWT topology, the arrangement scheme of the filter can be more than one kind, and different schemes may affect the filter performance. In this paper, research on the existing two kinds of filters, as well as a proposed one, for the DI-OEWT topology used in photovoltaic grid-tied applications is presented. The equivalent circuits of these filters are derived, and based on this, the harmonic suppression capability of these filters is analyzed and compared. Furthermore, a brief parameter design method of these filters is also introduced, and based on the design examples, the inductance and capacitance requirements of these filters are compared. In addition, these filters are also evaluated in terms of the applicability for fault tolerance. At last, the analysis is verified through an experiment on a 30 kW dual-three-level inverter prototype. Full article
Show Figures

Figure 1

Back to TopTop