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Abstract: This paper introduces a sensorless nonlinear control scheme based on feedback linearization
control (FLC) of an open-end winding five-phase induction motor (OeW-5PIM) topology fed by a
dual neutral point clamped (NPC) inverter. The suggested sensorless control is combined with the
sliding mode (SM) controller to improve the dynamic performance (i.e., rising time, overshoot, etc.) of
the studied motor. Furthermore, a stator-current-based model reference adaptive system (SC-MRAS)
estimator is designed for the estimation of the rotor flux and the motor speed. In parallel, to enhance
the robustness of the designed sensorless control against motor parameter changes, an adaptive
estimation method is suggested to estimate the rotor and stator resistances during low-speed ranges.
The estimation method of motor resistances is associated with the suggested sensorless control to
further improve the speed estimation accuracy and minimize the speed estimation error. Finally, the
effectiveness and correctness of the suggested control with the examined estimators are validated in
real-time implementation using a hardware-in-the-loop (HIL) based on the dSpace 1103 board.

Keywords: five-phase induction motor; open-end winding; parameters estimation; SC-MRAS estimator;
hardware-in-the-loop platform; sensorless control

1. Introduction

Nowadays, multi-phase AC machine drives have many advantageous characteris-
tics over three-phase machine drives, such as high robustness, reduced rotor harmonic
currents, higher power density, reduced electromagnetic torque pulsations, reduced per-
phase current, lower MMF harmonics, and higher reliability and degrees of freedom [1–10].
Therefore, multi-phase machine drives appear to be an outstanding competitor, espe-
cially in critical industrial applications, such as electric aircraft, railway traction, naval
propulsion and other high-power applications, where high reliability and redundancy
are required [9,11–13]. On the other hand, neutral point clamped (NPC) inverters have
been widely used for medium-/high-voltage industrial applications due to their inher-
ent advantages such as reduced common-mode voltage, lower voltage stress on inverter
switches, reduced harmonic distortion, etc. [14,15]. Because of these advantages, NPC
inverters are suitable for multi-phase motor drives. It is possible to combine the benefits
of these two concepts by merely adopting the open-end winding (OeW) topology [2,5],
where the suggested topology can be obtained by disconnecting the 5PIM neutral point
and feeding both ends of the stator windings using a dual five-phase NPC inverter. The
OeW structure has gained interest because of the many advantageous features it has compared
to a star-connected machine, such as lower switching frequency, reduced switching losses, lower
per-phase power, a multi-level waveform with enhanced quality and improved fault-tolerant
capability [2,7,16]. These features have therefore motivated authors to adopt this topology.
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In the past decades of development, researchers around the world have designed
some control techniques for the 5PIM or OeW-5PIM topology, such as PI control [5], direct
torque control [17], predictive current control [18], predictive voltage control [10], predictive
torque control [19], backstepping control [2] and sliding mode control [7]. In addition,
feedback linearization control gained wide acceptance in the industrial world [20] due to its
attractive advantages of fast dynamic response, decoupled control of torque and rotor flux
and simple design. Therefore, it is often applied over three-phase machine drives. However,
the FLC is very sensitive to parameter changes and external disturbances. Therefore, a
sliding mode (SM) controller is suggested in this paper to improve the FLC performance of
the studied motor. Indeed, this SM controller is resistant to external disturbances, offers
a stable control and is insensitive to parameter changes [7]. Unfortunately, some control
techniques require precise information on both the rotor speed and the rotor position to
decouple an OeW-5PIM into the flux and torque subsystems and achieve high-performance
control. Usually, the rotor speed is obtained with a mechanical sensor mounted on the shaft
of the motor. Nevertheless, the installation of mechanical sensors increases the number
of connection cables, the mounting space, the susceptibility to noise and the cost and
minimizes the reliability of the drive system [2,3,5]. To address these problems, a lot
of attention has been paid during the last few decades to speed estimation in order to
fulfill the requirement of the sensorless control by minimizing the number of mechanical
sensors, particularly multi-phase motor drives [1–4,10,18]. However, these sensorless
control techniques have the major drawback of being sensitive to motor parameter changes,
particularly at low-speed ranges. Motor resistance values play a vital role during speed
estimation, and their values may change up to 50% and 100% of their initial values due to
the temperature variation of the motor [21,22]. Thus, the estimated flux and estimated speed
will deviate from their actual values when the rotor resistance (Rr) and stator resistance (Rs)
are changed, deteriorating the estimator’s performance [2,4]. For this reason, the values of
motor resistances must be estimated to accurately achieve the flux and speed estimations.
Consequently, research on the sensorless control of multi-phase machines under motor
parameter mismatches is a timely topic of high importance.

In the recent five years, some research in the literature on the simultaneous estimation
of rotor speed and Rr and/or Rs of multi-phase machines has been investigated by many
methods. The famous ones are the extended Kalman filter [23], the Luenberger observer [6],
the backstepping observer [10], the reference model adaptive (MRAS) [2], the sliding
mode observer (SMO) [9] and artificial intelligence [22]. The authors in [23] suggested
an extended Kalman filter to ensure the systems state estimation, such as the rotor speed,
the rotor fluxes, and the Rr and Rs of the dual star induction motor. Unfortunately, the
suggested observer is associated with a high computational burden, is devoid of tuning
criteria and difficult to implement, as stated by the authors. In [6], the authors presented
a new method to estimate the rotor speed and the Rs value of the 5PIM drive using a
Luenberger observer. Nevertheless, the presented observer is relatively complex and
requires more computing time because of the complexity of system equations. The authors
in [10] developed an approach for the estimation of rotor speed, Rr and stator currents,
which are deduced from the robust backstepping observer, where the efficiency of the
drive system is improved. Nevertheless, intensive calculations and computing time are
required to run this method. In [2], a backstepping control of the OeW-5PIM topology was
used for the tracking objective, and an MRAS estimator was adopted for speed and load
torque estimation and the motor resistances. However, it may be observed that there exist
some problems such as speed estimation errors and slow response times, especially during
sudden changes in the reference speed or load torque. Furthermore, the sensitivity to motor
parameter changes is a major problem because the effectiveness of the MRAS depends on
the motor resistances. The authors in [9] used an SMO to simultaneously estimate the rotor
speed and the Rr value of the 5PIM. The used methods showed the capability of updating
the Rr values at a low-speed range. Nevertheless, it has been observed that the estimated
Rr takes a long time to track the real one. Additionally, the SMO suffers from the chattering
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problem and is influenced by the noise characteristic, which affects the precision of the
speed estimation. In [22], a new approach method based on artificial intelligence such as
neural networks was used to estimate the Rr and Rs, where better performance has been
obtained compared to classical methods. Nevertheless, the artificial intelligence methods
are more complex and require expertise and lengthy execution time.

Among these methods, the MRAS estimator is one of the best methods of sensorless
schemes due to its simplicity and low computational burden compared with other estima-
tors, so it is often applied to sensorless motor drives [2,5,10,21,24–31]. In general, a number
of MRAS estimators depending on the error signal formulation have been investigated,
e.g., MRAS based on active power [24], reactive power [25], back electromagnetic field [26],
virtual variables [27], rotor flux [2], stator current [28], electromagnetic torque [29], neu-
ral network [30], fuzzy logic [31] or sliding mode [5]. Of these, a stator-current-based
MRAS is reported to behave satisfactorily under different operating conditions. This paper
introduces the implementation and investigation of the sensorless nonlinear control for
the OeW-5PIM topology fed by a dual NPC inverter. This paper combines the presented
control and the studied topology. Until now (as far as the authors know), this is original
work for the OeW-5PIM topology and has not been investigated before in other studies.
The proposed control scheme uses an FLC technique, whose robustness is improved by
using the SM controller, on the speed-flux controllers of the studied motor. Furthermore, a
stator-current-based MRAS estimator is used for the estimation of the rotor speed and rotor
flux and the motor resistances. This estimator is based on a simple algorithm compared to
the earlier estimators presented in [23–27,29–31]. The aim is to minimize the effect of motor
parameter changes and ensure the tracking of the speed estimation error to zero, especially
in low-speed ranges. Finally, the feasibility and correctness of the designed control with
the examined estimators are investigated by using a HIL platform based on the dSpace
1103 board. These HIL results are the main contribution of this paper, where the enhanced
performance and the inherent robustness of the suggested sensorless nonlinear control are
shown under different operating conditions.

The following is how the paper is structured: Section 2 formulates the 5PIM model and
a brief review of the studied OeW-5PIM topology. In Section 3, details of the suggested FLC
approach based on the SM controller are presented. Then, Section 4 presents the proposed
SC-MRAS estimator for the simultaneous estimation of the motor speed and the resistances
of the OeW-5PIM topology. The real-time HIL results and performance evaluations of
the suggested control with the examined estimators are discussed in Section 5. Finally,
Section 6 offers the overall conclusion of the presented work.

2. Modeling of OeW-5PIM Topology

This section discusses the 5PIM model in synchronous reference frames (d-q-x-y) with
a brief review of the studied OeW-5PIM topology fed by a dual three-level NPC inverter.

2.1. Description of 5PIM Model

In order to simplify the differential equations (nonlinear) by having a constant induc-
tance term, the complexity of the five-phase model is reduced by using the field orientation
law, where it is assumed that the quadratic rotor flux is zero ϕrq = 0, while the direct flux
is ϕrd = ϕr [4,21]. Thus, the 5PIM model is described in (d-q-x-y) frames, where the motor
torque is produced by the d-q currents, whereas the power losses in the motor windings are
caused by the x-y currents.

disd
dt = α1isd + ωrisq + α2 ϕr +

Vsd
σLs

disq
dt = α1isq −ωrisd + α2 ϕr +

Vsq
σLs

disx
dt = − Rs

Lls
isx +

Vsx
Lls

disy
dt = − Rs

Lls
isy +

Vsy
Lls

(1)
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dϕr
dt = 1

Tr
(Lsrisd1 − ϕr)

dωr
dt = − F

J ωr +
Cem

J −
Cr
J

(2)

Thus, the electromagnetic torque expression becomes:

Cem =
npLsr

Lr
ϕrisq (3)

where isd, isq, isx and isy denote the stator current components; Vsd, Vsq, Vsx and Vsy denote
the stator voltage components; Lls and Llr are the stator and rotor leakage inductances;
Lsr is the stator/rotor mutual inductance; Tr is the rotor time constant; Cr is the load torque;
J is the inertia moment; F is the friction coefficient. Additionally:

α1 =
1

σLs

(
Rs +

L2
srRr

L2
r

)
; α2 =

RrLsr

σLsLr
; σ =

1− L2
sr

LsLr
.

where σ is the total leakage factor.

2.2. Power Circuit of OeW-5PIM

The power circuit of a 5PIM fed by a dual three-level NPC inverter with a single DC
source is shown in Figure 1 and will be investigated in this work. The suggested topology
comprises a 5PIM, two NPC inverters, two DC-link capacitors, a DC source and a controller
unit. The studied OeW-5PIM is realized by disconnecting the neutral point of the stator
windings of the 5PIM [2] and feeding the 5PIM from the left and right sides of stator
windings by a dualNPC inverter (NPC-1 and NPC-2), as shown in Figure 1. Each leg of
the NPC inverter has four switches with anti-parallel diodes and two clamping diodes.
Moreover, each NPC inverter possesses 243 possible switching states. As a result, there are
240 active vectors and three null vectors. The switching pulses of the dual three-level NPC
inverter are generated through hysteresis current control, where the switching cases of
converter NPC-1 are produced in a conventional way, while the phase shift is 180 degrees
in the switching cases of the converter NPC-2.
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2

5

i
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V

V
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=

=
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The five-phase voltage across the 5PIM stator windings is described as follows:
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Vsa = Va1n −Va2n
Vsb = Vb1n −Vb2n
Vsc = Vc1n −Vc2n
Vsd = Vd1n −Vd2n
Vse = Ve1n −Ve2n

(4)

Furthermore, the five-phase stator voltages can be obtained from the DC source and
the switching signals of the dual NPC inverter as: VNPC−1 =

[
Sa1 Sb1 Sc1 Sd1 Se1

]T Vdc
2

VNPC−2 =
[

Sa2 Sb2 Sc2 Sd2 Se2
]T Vdc

2

(5)

The voltage space vectors of each NPC inverter in the stationary frames (α-β-u-z) are
described as follows:{

Vαβi =
2
5
(
Vain + aVbin + a2Vcin + a3Vdin + a4Vein

)
Vuzi =

2
5
(
Vain + aVbin + a2Vcin + a3Vdin + a4Vein

) (6)

The symbols Va1n, Vb1n, Vc1n, Vd1n and Ve1n denote the output voltages of NPC-1.
Similarly, the symbols Va2n, Vb2n, Vc2n, Vd2n and Ve2n denote the output voltages of NPC-2.
In addition, a = exp(j2π/5) and i = [1,2].

3. Adopted Control Techniques

The basic block schematic of the suggested control for the OEW-5PIM topology is pre-
sented in Figure 2. As can be seen, the SM controllers of flux and speed are used to provide
the new variables from the errors of rotor flux and speed. These outputs are fed to the input
block of the FLC technique, which produces the reference components of the currents in the
α-β frame. The reference stator currents produced by the FLC approach are transformed to
the phase variables and thereafter given to the dual hysteresis current controller.
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3.1. Feedback Linearization Control (FLC)

The FLC approach is one of the best nonlinear control methods that can achieve good
performance with decoupled control systems [20]. Its basic goal is to convert a nonlinear
system into a linear one based on state feedback by introducing a new input variable. The
rotor flux is defined as:

ϕ2
r = ϕ2

rα + ϕ2
rβ (7)

By deriving (7), the rotor flux is obtained by:
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dϕr
dt

=
ϕrα

ϕr

dϕrα

dt
+

ϕrβ

ϕr

dϕrβ

dt
(8)

Then, (8) becomes the following:

dϕr
dt

= − ϕr
Tr

+
Lsr

Tr ϕr
(isα ϕrα + isβ ϕrβ) (9)

It is possible to rewrite the derivative of rotor speed and flux as:
dωr
dt =

np Lsr
JLr

u1 − Cr
J

dϕr
dt = Lsr

Tr
u2 − ϕr

Tr

(10)

The new constants in (10) are defined as follows:{
u1 = (isβ ϕrα − isα ϕrβ)

u2 = 1
ϕr
(isα ϕrα + isβ ϕrβ)

(11)

Consequently, the reference stator currents produced by the FLC approach in the α-β
frame can be written as follows:  i∗sα = ϕrα

ϕr
u2 −

ϕrβ

ϕ2
r

u1

i∗sβ =
ϕrβ

ϕr
u2 +

ϕrα

ϕ2
r

u1

(12)

3.2. Sliding Mode (SM) Controller

The SM speed controller and SM flux controller can be better used to replace the PI
controllers found in traditional FLC techniques.

It is preferable to use the SM flux and speed controllers in place of the PI controllers
used in conventional FLC methods.

The essential target is to allow the speed and rotor flux to be controlled according to
their references. The errors of speed and flux components are defined as:{

eω = ω∗r −ωr

eϕ = ϕ∗r − ϕr
(13)

Consequently, the derivative of speed and flux errors can be written as:
deω
dt = dω∗r

dt −
dωr
dt

deϕ

dt = dϕ∗r
dt −

dϕr
dt

(14)

In view of (10), the derivative of eω and eϕ can be rewritten as:
deω
dt = Cr

J −
np Lsr

JLr
u1 +

dω∗r
dt

deϕ

dt = ϕr
Tr
− Lsr

Tr
u2 +

dϕ∗r
dt

(15)

The sliding surfaces associated with the eω and eϕ are described as:{
sω = eω + εω

∫
eωdt

sϕ = eϕ + εϕ

∫
eϕdt

(16)

Then, their derivatives are expressed as follows:
dsω
dt = deω

dt + εωeω

dsϕ

dt =
deϕ

dt + εϕeϕ

(17)

where εω and εϕ are the time constants. Substituting (10) into (15), the derivatives of sliding
surfaces are obtained as follows:
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dsω
dt = Cr

J −
np Lsr

JLr
u1 +

dω∗r
dt + εωeω

dsϕ

dt = ϕr
Tr
− Lsr

Tr
u2 +

dϕ∗r
dt + εϕeϕ

(18)

By using (18), the sliding surfaces can be rewritten as:
dsω
dt = τ1 − ζ1 +

dω∗r
dt + εωeω

dsϕ

dt = τ2 − ζ2 +
dϕ∗r
dt + εϕeϕ

(19)

where τ1 is dependent on the inertia of the motor and τ2 is dependent on the rotor resistance
and rotor inductance, which are defined as:{

τ1 = 1
J Cr = q3Cr

τ2 = 1
Tr

ϕr = q4 ϕr
(20)

Additionally, ζ1 and ζ2 are defined as follows: ζ1 =
np Lsr

JLr
u1 = q1u1

ζ2 = Lsr
Tr

u2 = q2u2

(21)

where q1, q2, q3 and q4 are the control gains. The boundary limits of these gains can be
obtained as follows: 

qmin1 ≤ q1 ≤ qmax1

qmin2 ≤ q2 ≤ qmax2

qmin3 ≤ q3 ≤ qmax3

qmin4 ≤ q4 ≤ qmax4

(22)

The estimation of q1, q2, q3 and q4 can be the geometric mean of the above bounds as:
q̂1 = (qmin1qmax1)

1/2

q̂2 = (qmin2qmax2)
1/2

q̂3 = (qmin3qmax3)
1/2

q̂4 = (qmin4qmax4)
1/2

(23)

Continuous control laws can be defined by (19). These defined control laws can be
interpreted by: {

ζ̂1 = τ̂1 +
.

ω
∗
r + εωeω

ζ̂2 = τ̂2 +
.
ϕ
∗
r + εϕeϕ

(24)

By using (19), ζ1 and ζ2, τ1 and τ2 are estimated as follows:{
ζ̂1 = q̂1u1

ζ̂2 = q̂2u2
(25){

τ̂1 = q̂3Cr

τ̂2 = q̂4 ϕr
(26)

According to the sliding mode reaching condition and the rule of the sliding condition(
1
2

)(
d
dt

)
(s) ≤ η|s|, we add discontinuity to terms ζ1 and ζ2 across the surface

(
d
dt

)
= 0.

Thus, the output signals of the SM controllers are defined as follows:
u1 =

[
τ̂1 +

dω∗r
dt + εωeω − G1sign

(
sϕ

)]
q̂−1

1

u2 =
[
τ̂2 +

dϕ∗r
dt + εϕeϕ − G2sign(sω)

]
q̂−1

2

(27)

In order to minimize the impact of the chattering, a saturation function sat(s) is used
in place of the conventional signum function, which is defined as follows [3]:
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sat(s) =


1 i f s � χ
s
χ i f |s| ≤ χ

−1 i f s ≺ χ

(28)

By replacing the value of sat (s) from (28) in (27), the output signal of the SM controllers
can be rewritten as: 

u1 = q̂−1
1

[
τ̂1 +

dω∗r
dt + εωeω − G1sat

(
sϕ

)]
u2 = q̂−1

2

[
τ̂2 +

dϕ∗r
dt + εϕeϕ − G2sat(sω)

] (29)

where G1 and G2 are correction gains, which are obtained from the SM existence condition[
dSϕ

dt
dSω
dt

]
< 0.

4. Design of Proposed Estimator

This section discusses the development of the SC-MRAS estimator to estimate the
motor speed, stator current, rotor flux and motor resistances of the OeW-5PIM topology.
The SC-MRAS estimator stability was presented in detail in [32], and its block diagram is
presented in Figure 3. Indeed, the main objective of this estimation technique is to provide
the estimated rotor speed, the estimated rotor flux and the estimated motor parameters
under the assumption that the only available input variables for the measurement are the
stator currents and the supplied voltages. It is based on using four estimators:
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4.3. Rotor Speed Estimator 
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4.1. Rotor Flux Estimator

The rotor flux estimator is based on the estimation of the rotor resistance, the rotor
fluxes and the stator currents in α-β frames, which are defined as follows:
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)
−ωest
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(
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)
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(30)

4.2. Stator Current Estimator

The outputs of the stator current estimator are grounded on the stator voltage model
in the SC-MRAS estimator that determines the estimates of stator current in α-β frames,
which are defined as:

diest
sα

dt = −iest
sα α1 + α2Rest

r ϕest
rα + α2

Rest
r

ωest
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rβ + Vsα
σLs

diest
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dt = −iest
sβ α1 + α2Rest

r ϕest
rβ −

α2
Rest

r
ωest

r ϕest
rα +

Vsβ

σLs

(31)
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4.3. Rotor Speed Estimator

The difference in stator current error between measured and estimated values is
calculated as follows: {

eiα = isα − iest
sα

eiβ = isβ − iest
sβ

(32)

The estimated rotor flux is transmitted to the PI controller along with the error signals
of the stator currents in α-β frames. The estimated rotor speed is the output signal from the
PI controller and is calculated as [28,32]:

ωest
r = Kpω

(
eiα ϕest

rβ − eiβ ϕest
rα

)
+ Kiω

t∫
0

(
eiα ϕest

rβ − eiβ ϕest
rα

)
dt (33)

where Kpω and Kiω are the coefficients of the estimated speed controller with values of 100
and 900, respectively.

4.4. Motor Resistances Estimator

The majority of prior 5PIM sensorless control research studies treat the actual 5PIM
drive parameters, such as resistances and inductances, as constant values. Nevertheless,
with continued machine use, the motor’s temperature clearly rises [30,31,33]. This phe-
nomenon results in a mismatch between the real parameters in the 5PIM drive and that
used in the suggested controller, which can result in the instability of the drive system and
not operate with high precision performance. Moreover, the feasibility of the SC-MRAS
is dependent strictly on the motor resistances (30), especially in the low-speed range. As
a result, any variation in motor resistance results in inaccurate calculations of the rotor
flux and rotor speed. Consequently, the estimation method for the motor resistances is
essential in sensorless drives. In our study, real-time parameter estimations are developed
in conjunction with the SC-MRAS to avoid estimation errors and to further improve the
efficiency of the sensorless drives. The stator resistance of the OeW-5PIM topology can be
obtained as [2]:

Rest
s = KpRs

[
eiαiest

sα + eiβiest
sβ

]
+ KiRs

t∫
0

[
eiαiest

sα + eiβiest
sβ

]
dt (34)

Similarly, the rotor resistance of the OeW-5PIM topology can be estimated as follows:

Rest
r = KRr

t∫
0

[
eiα
(

ϕest
rα − Lsriest

sα

)
+ eiβ

(
ϕest

rβ − Lsriest
sβ

)]
dt (35)

where KRr is a positive constant equal to 200. KpRs and KiRs are the coefficients of the PI
controller for the estimated stator resistance with values of 0.01 and 0.02, respectively.

5. Hardware-in-the-Loop Testing Results
5.1. HIL Setup

The hardware-in-the-loop (HIL) methodology has gained widespread acceptance in
critical applications such as hybrid electric vehicles, automotive traction and control sys-
tems [34–36]. It has many features such as low cost, high safety and higher reliability to
verify the control system [5,30,35]. As stated by the authors in [36], if the HIL results are
satisfactory, then the same control can be used to investigate the control system experimen-
tally on a real motor drive. The HIL setup is shown in Figure 4 and consists of a dSpace
(DSP-1103) board, an OPAL-RT simulator (OP5600) and an oscilloscope. In our application,
the suggested control with the examined estimators is implemented on the DSP-1103 board
to provide the pulsing signals of the dual NPC converter, while the OeW-5PIM topology
fed by the dual NPC inverter is designed in the RT-LAB platform to be executed on OP5600.
The switching states generated from the DSP-1103 board are obtained by an FPGA-based
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digital I/O card, which provides the switching states to control the dual NPC inverter in
the RT-LAB platform. The OP6500 then generates feedback voltage and current signals,
which are then transmitted to the DSP-1103 board. The switching frequency is set to 5 KHz;
meanwhile, the sampling time is set to 50 µs. The electrical and mechanical parameters of
the motor are as follows: P = 2.2 kW, Rs = 2.9 Ω, Rr = 2.7 Ω, Ls = 796.4 mH, Lr = 796.4 mH,
Lsr = 785.2 mH, J = 0.007 Kg.m2, F = 0.0018 N.m.s, and np = 1.
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5.2. First Test

To demonstrate the validity of the designed control technique and SC-MRAS estimator,
the first conducted test was performed under load torque variations. The reference speed
is set to 157 rad/s. Figure 5a presents the estimated speed and rotor speed of the studied
OeW-5PIM topology.
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Figure 5. OeW-5PIM performance under load torque variations (a) speeds responses; (b) estimation error.

It is seen clearly that the estimated speed perfectly tracks the real rotor speed with
excellent performance, while the loading changes do not have any effect on the speed
tracking. Therefore, the estimation error is close to zero at steady state and attains approxi-
mately 0.04% error during the transient as introduced in Figure 5b. This result indicates
the accuracy of the designed controller with the used estimator against load disturbances
compared to previous works [8,10,37]. Figure 6a shows the d-q rotor flux components of the
studied motor. It should be noted that the d-rotor flux is aligned at the reference flux (1 Wb),
while the q-rotor rotor flux is maintained at zero. Figure 6b introduces the load torque and
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the developed torque of the OeW-5PIM topology for the suggested sensorless nonlinear
control. It is clear that the developed torque follows the step changes of the reference load
torque in the steady state with acceptable ripples compared to the OeW-5PIM topology fed
by the dual two-level inverter presented in [2,5,7].

Machines 2023, 11, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 6. OeW-5PIM performance under load torque variations (a) d-q rotor flux responses; (b) 

developed torque. 

The stator current in the d-q frame is presented in Figure 7a. It is observed that the q-

stator current is directly proportional to the developed torque of the studied motor, while 

the d-stator current is represented as an image for the d-rotor flux component and is equal 

to a constant value of 2.6 A. At the same time, the amplitude of the stator current in the x-

y frame is very small and approximately 0.04 A. In addition, it can be said from Figure 8 

that the amplitudes of stator currents in the α-β frame are increased after load torque 

changes. At the same time, these currents are balanced sinusoidal waveforms, as can be 

noticed in the zoomed window shown in Figure 8. 

 

Figure 7. OeW-5PIM performance under load torque variations (a) stator currents in d-q frames; 

(b) stator currents in x-y frames. 

 

Figure 8. The stator currents in α-β frames. 

Figure 6. OeW-5PIM performance under load torque variations (a) d-q rotor flux responses; (b) devel-
oped torque.

The stator current in the d-q frame is presented in Figure 7a. It is observed that the
q-stator current is directly proportional to the developed torque of the studied motor, while
the d-stator current is represented as an image for the d-rotor flux component and is equal
to a constant value of 2.6 A. At the same time, the amplitude of the stator current in the x-y
frame is very small and approximately 0.04 A. In addition, it can be said from Figure 8 that
the amplitudes of stator currents in the α-β frame are increased after load torque changes.
At the same time, these currents are balanced sinusoidal waveforms, as can be noticed in
the zoomed window shown in Figure 8.
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5.3. Second Test

To evaluate the performance of the designed sensorless control of the OeW-5PIM
topology under different speed values, a special test was performed with constant load
torque (4 N.m at 2 s) during high-speed reverse. The used reference speed changes in three
stages, from 0 to 157 rad/s, 157 rad/s to 0 rad/s and 0 rad/s to −157 rad/s, as shown in
Figure 9a. As presented in this figure, the estimated speed is very close to the real one
without any overshoot. At the same time, one can notice that from Figure 9b the estimation
error of the SC-MRAS estimator varies quickly from time to time and that the maximum
error is approximately 0.04 rad/s, which corresponds to the instant of speed reversal.
Consequently, it can be said that the presented SC-MRAS estimator works well against
sudden speed changes. The d-rotor flux presents a fast response, and it takes precisely
the reference flux (1 Wb) in the whole speed range, whereas the q-rotor flux stays nearly
equal to zero, as shown in Figure 10a. The developed torque and reference load torque
of the studied motor are presented in Figure 10b. It can be concluded that the developed
torque behaves according to the behavior of the drive systems, where the torque amplitude
is dependent on the reference speed changes. On the other hand, the stator currents in the
α-β frame have a perfect following for the evolution of the drive system, and the studied
motor can operate stably at the defined reference speed, as presented in Figure 11.
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5.4. Third Test

In order to investigate the feasibility of the designed sensorless control during low-
speed reverse, the FLC technique based on the SM controller of the OeW-5PIM topology,
including the SC-MRAS estimator, was tested with the motor resistance estimation. The
used reference speed changes in three stages, from 0 to 8 rad/s, 8 rad/s to 0 rad/s and
0 rad/s to −8 rad/s, as shown in Figure 12a. It is clear that the estimated speed converges
perfectly with the real rotor speed during low/zero speeds. The estimation error is very
small, which does not exceed 0.02%, as shown in Figure 12b. Therefore, the SC-MRAS
estimator has better tracking speed than the previous works introduced in [8,37]. Fur-
thermore, Figure 13a presents that the d-q rotor flux components indicate an excellent
decoupling between the rotor flux and the developed torque, even at a zero/low-speed
range. According to Figure 13b, the designed sensorless control provides rapid responses
and accurate dynamics of the developed torque of the OeW-5PIM topology for the specified
reference speed in this test. On the other hand, it is clearly visible that from Figure 14
the estimated motor resistances converge to their real values within a short time frame
compared to the previously introduced methods [4,8,21,22].
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5.5. Fourth Test

To investigate the robustness of the designed sensorless controller and estimator under
motor parameter changes at a low speed of 8 rad/s with motor resistances estimations,
the Rs and Rr are increased to 50% of their nominal values. Meanwhile, Ls and Lr are
changed to 20% of their nominal value. Indeed, the studied OeW-5PIM topology is started
with nominal parameter values Rs = 10 Ω, Ls = 0.4642 H, Rr = 6.3 Ω, Lr = 0.4612 H,
then the motor parameters are increased to 1.5Rs, 1.2Ls, 1.5Rr and 1.2Lr, as shown in
Figures 15 and 16. The motor resistances estimator is activated at 4 s to achieve better
performance under motor parameter changes. According to Figures 15a and 16a, it can be
concluded that the motor resistances estimator based on the used SC-MRAS estimator can
accurately estimate the real values of Rs and Rr in a low-speed range. The estimated speed
and rotor speed are given in Figures 17a and 18a. It is found that the estimated speed still
converges to the real rotor speed, but when the values of motor parameters (Rs, Ls, Rr and
Lr) vary from their real value, the suggested sensorless control becomes unstable during
the motor parameter mismatches, which leads to a significant error in the estimation of real
rotor speed, as shown in Figures 17b and 18b. To address this problem, the activation of
the Rs and Rr estimators at 4 s are performed. The speed estimation error is reduced to
0.0015 rad/s from 0.008 rad/s in the case of Rs estimation and is reduced to 0.0005 rad/s
from 0.002 rad/s in the case of Rr estimation. Consequently, the obtained results prove
satisfactory efficiency and the feasibility of the proposed simultaneous estimation of motor
speed, Rs and Rr in sensorless nonlinear control based on the SC-MRAS estimator of
OeW-5PIM topology.
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6. Conclusions

In this paper, an effective sensorless control based on the FLC technique with an SM
controller is suggested for the control of an OeW-5PIM topology. In the suggested scheme,
the SC-MRAS estimator is presented to ensure an accurate estimation of the speed and rotor
flux at a wide range of operation modes. In addition, to ensure the estimation accuracy
and minimize the impact of the motor parameter changes on the presented estimator,
the paper focused on the estimation of the rotor and stator resistances, especially at the
low-/zero-speed range. The correctness and the feasibility of the overall suggested control
are successfully tested via the HIL platform under various operating points of the studied
motor such as load changes, low-/zero-speed range, parameter mismatches and rotation
inversion range. The obtained results prove that the suggested sensorless nonlinear control
using the SC-MRAS estimator and resistances estimation provides a very competitive
solution for multi-phase motors, particularly the studied topology. On the other hand, this
proposed sensorless control is an original application where it is applied in this work for the
first time for the present studied motor topology. At the same time, the proposed technique
is different from the previous techniques published in [2–10,17–19,21], where most of these
techniques suffer from a common problem of complexity: computational intensiveness.
Instead, the proposed method is very simple, and the process of the rotor speed and the
motor resistance estimator operates in parallel rather than in a sequential manner.
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