Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = paleomicrobiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 674 KiB  
Review
Forensic Microbiology: When, Where and How
by Riccardo Nodari, Milena Arghittu, Paolo Bailo, Cristina Cattaneo, Roberta Creti, Francesco D’Aleo, Veroniek Saegeman, Lorenzo Franceschetti, Stefano Novati, Amparo Fernández-Rodríguez, Andrea Verzeletti, Claudio Farina and Claudio Bandi
Microorganisms 2024, 12(5), 988; https://doi.org/10.3390/microorganisms12050988 - 14 May 2024
Cited by 7 | Viewed by 5053
Abstract
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application [...] Read more.
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology. Full article
(This article belongs to the Special Issue Forensic and Post-Mortem Microbiology)
Show Figures

Figure 1

29 pages, 4032 KiB  
Article
A Case Study for the Recovery of Authentic Microbial Ancient DNA from Soil Samples
by Vilma Pérez, Yichen Liu, Martha B. Hengst and Laura S. Weyrich
Microorganisms 2022, 10(8), 1623; https://doi.org/10.3390/microorganisms10081623 - 10 Aug 2022
Cited by 8 | Viewed by 5706
Abstract
High Throughput DNA Sequencing (HTS) revolutionized the field of paleomicrobiology, leading to an explosive growth of microbial ancient DNA (aDNA) studies, especially from environmental samples. However, aDNA studies that examine environmental microbes routinely fail to authenticate aDNA, examine laboratory and environmental contamination, and [...] Read more.
High Throughput DNA Sequencing (HTS) revolutionized the field of paleomicrobiology, leading to an explosive growth of microbial ancient DNA (aDNA) studies, especially from environmental samples. However, aDNA studies that examine environmental microbes routinely fail to authenticate aDNA, examine laboratory and environmental contamination, and control for biases introduced during sample processing. Here, we surveyed the available literature for environmental aDNA projects—from sample collection to data analysis—and assessed previous methodologies and approaches used in the published microbial aDNA studies. We then integrated these concepts into a case study, using shotgun metagenomics to examine methodological, technical, and analytical biases during an environmental aDNA study of soil microbes. Specifically, we compared the impact of five DNA extraction methods and eight bioinformatic pipelines on the recovery of microbial aDNA information in soil cores from extreme environments. Our results show that silica-based methods optimized for aDNA research recovered significantly more damaged and shorter reads (<100 bp) than a commercial kit or a phenol–chloroform method. Additionally, we described a stringent pipeline for data preprocessing, efficiently decreasing the representation of low-complexity and duplicated reads in our datasets and downstream analyses, reducing analytical biases in taxonomic classification. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 2752 KiB  
Article
Mycobiome-Host Coevolution? The Mycobiome of Ancestral Human Populations Seems to Be Different and Less Diverse Than Those of Extant Native and Urban-Industrialized Populations
by Jelissa Reynoso-García, Yvonne Narganes-Storde, Tasha M. Santiago-Rodriguez and Gary A. Toranzos
Microorganisms 2022, 10(2), 459; https://doi.org/10.3390/microorganisms10020459 - 16 Feb 2022
Cited by 5 | Viewed by 4166
Abstract
Few data exist on the human gut mycobiome in relation to lifestyle, ethnicity, and dietary habits. To understand the effect of these factors on the structure of the human gut mycobiome, we analyzed sequences belonging to two extinct pre-Columbian cultures inhabiting Puerto Rico [...] Read more.
Few data exist on the human gut mycobiome in relation to lifestyle, ethnicity, and dietary habits. To understand the effect of these factors on the structure of the human gut mycobiome, we analyzed sequences belonging to two extinct pre-Columbian cultures inhabiting Puerto Rico (the Huecoid and Saladoid) and compared them to coprolite samples found in Mexico and Ötzi, the Iceman’s large intestine. Stool mycobiome samples from extant populations in Peru and urban cultures from the United States were also included. The ancient Puerto Rican cultures exhibited a lower fungal diversity in comparison to the extant populations. Dissimilarity distances showed that the Huecoid gut mycobiome resembled that from ancient Mexico. Fungal genera including Aspergillus spp., Penicillium spp., Rasamsonia spp., Byssochlamys spp., Talaromyces spp., Blastomyces spp., Monascus spp., and Penicilliopsis spp. were differentially abundant in the ancient and extant populations. Despite cultural differences, certain fungal taxa were present in all samples. These results suggest that culture and diet may impact the gut mycobiome and emphasize that modern lifestyles could be associated with the alteration of gut mycobiome diversity. The present study presents data on ancient and extant human gut mycobiomes in terms of lifestyle, ethnicity, and diet in the Americas. Full article
(This article belongs to the Special Issue Understanding Ancient Microbiomes)
Show Figures

Figure 1

12 pages, 1337 KiB  
Article
Metataxonomic Analysis of Bacteria Entrapped in a Stalactite’s Core and Their Possible Environmental Origins
by George Michail, Lefkothea Karapetsi, Panagiotis Madesis, Angeliki Reizopoulou and Ioannis Vagelas
Microorganisms 2021, 9(12), 2411; https://doi.org/10.3390/microorganisms9122411 - 23 Nov 2021
Cited by 7 | Viewed by 3361
Abstract
Much is known about microbes originally identified in caves, but little is known about the entrapment of microbes (bacteria) in stalactites and their possible environmental origins. This study presents data regarding the significant environmental distribution of prokaryotic bacterial taxa of a Greek stalactite [...] Read more.
Much is known about microbes originally identified in caves, but little is known about the entrapment of microbes (bacteria) in stalactites and their possible environmental origins. This study presents data regarding the significant environmental distribution of prokaryotic bacterial taxa of a Greek stalactite core. We investigated the involvement of those bacteria communities in stalactites using a metataxonomic analysis approach of partial 16S rRNA genes. The metataxonomic analysis of stalactite core material revealed an exceptionally broad ecological spectrum of bacteria classified as members of Proteobacteria, Actinobacteria, Firmicutes, Verrucomicrobia, and other unclassified bacteria. We concluded that (i) the bacterial transport process is possible through water movement from the upper ground cave environment, forming cave speleothems such as stalactites, (ii) bacterial genera such as Polaromonas, Thioprofundum, and phylum Verrucomicrobia trapped inside the stalactite support the paleoecology, paleomicrobiology, and paleoclimate variations, (iii) the entrapment of certain bacteria taxa associated with water, soil, animals, and plants such as Micrococcales, Propionibacteriales, Acidimicrobiales, Pseudonocardiales, and α-, β-, and γ-Proteobacteria. Full article
Show Figures

Figure 1

15 pages, 1610 KiB  
Article
The Postmedieval Latvian Oral Microbiome in the Context of Modern Dental Calculus and Modern Dental Plaque Microbial Profiles
by Alisa Kazarina, Elina Petersone-Gordina, Janis Kimsis, Jevgenija Kuzmicka, Pawel Zayakin, Žans Griškjans, Guntis Gerhards and Renate Ranka
Genes 2021, 12(2), 309; https://doi.org/10.3390/genes12020309 - 22 Feb 2021
Cited by 13 | Viewed by 3687
Abstract
Recent advantages in paleomicrobiology have provided an opportunity to investigate the composition of ancient microbial ecologies. Here, using metagenome analysis, we investigated the microbial profiles of historic dental calculus retrieved from archaeological human remains from postmedieval Latvia dated 16–17th century AD and examined [...] Read more.
Recent advantages in paleomicrobiology have provided an opportunity to investigate the composition of ancient microbial ecologies. Here, using metagenome analysis, we investigated the microbial profiles of historic dental calculus retrieved from archaeological human remains from postmedieval Latvia dated 16–17th century AD and examined the associations of oral taxa and microbial diversity with specific characteristics. We evaluated the preservation of human oral microbiome patterns in historic samples and compared the microbial composition of historic dental calculus, modern human dental plaque, modern human dental calculus samples and burial soil microbiota. Overall, the results showed that the majority of microbial DNA in historic dental calculus originated from the oral microbiome with little impact of the burial environment. Good preservation of ancient DNA in historical dental calculus samples has provided reliable insight into the composition of the oral microbiome of postmedieval Latvian individuals. The relative stability of the classifiable oral microbiome composition was observed. Significant differences between the microbiome profiles of dental calculus and dental plaque samples were identified, suggesting microbial adaptation to a specific human body environment. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2463 KiB  
Article
Assessing Metagenomic Signals Recovered from Lyuba, a 42,000-Year-Old Permafrost-Preserved Woolly Mammoth Calf
by Giada Ferrari, Heidi E. L. Lischer, Judith Neukamm, Enrique Rayo, Nicole Borel, Andreas Pospischil, Frank Rühli, Abigail S. Bouwman and Michael G. Campana
Genes 2018, 9(9), 436; https://doi.org/10.3390/genes9090436 - 31 Aug 2018
Cited by 3 | Viewed by 10992
Abstract
The reconstruction of ancient metagenomes from archaeological material, and their implication in human health and evolution, is one of the most recent advances in paleomicrobiological studies. However, as for all ancient DNA (aDNA) studies, environmental and laboratory contamination need to be specifically addressed. [...] Read more.
The reconstruction of ancient metagenomes from archaeological material, and their implication in human health and evolution, is one of the most recent advances in paleomicrobiological studies. However, as for all ancient DNA (aDNA) studies, environmental and laboratory contamination need to be specifically addressed. Here we attempted to reconstruct the tissue-specific metagenomes of a 42,000-year-old, permafrost-preserved woolly mammoth calf through shotgun high-throughput sequencing. We analyzed the taxonomic composition of all tissue samples together with environmental and non-template experimental controls and compared them to metagenomes obtained from permafrost and elephant fecal samples. Preliminary results suggested the presence of tissue-specific metagenomic signals. We identified bacterial species that were present in only one experimental sample, absent from controls, and consistent with the nature of the samples. However, we failed to further authenticate any of these signals and conclude that, even when experimental samples are distinct from environmental and laboratory controls, this does not necessarily indicate endogenous presence of ancient host-associated microbiomic signals. Full article
Show Figures

Figure 1

Back to TopTop