Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = p-terephthaldehyde

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 989 KiB  
Article
Combination of aza-Friedel Crafts MCR with Other MCRs Under Heterogeneous Conditions
by Giovanna Bosica and Roderick Abdilla
Catalysts 2025, 15(7), 657; https://doi.org/10.3390/catal15070657 - 6 Jul 2025
Viewed by 581
Abstract
Multicomponent reactions (MCRs) enable the efficient assembly of complex small molecules via multiple bond-forming events in a single step. However, individual MCRs typically yield products with similar core structures, limiting access to larger, more intricate scaffolds. Strategic selection of reactants allows the combination [...] Read more.
Multicomponent reactions (MCRs) enable the efficient assembly of complex small molecules via multiple bond-forming events in a single step. However, individual MCRs typically yield products with similar core structures, limiting access to larger, more intricate scaffolds. Strategic selection of reactants allows the combination of distinct MCRs, thus facilitating the synthesis of advanced molecular architectures with potential biological significance. Using our previously reported method for performing the aza-Friedel Crafts multicomponent reaction under green heterogeneous conditions, we have incorporated some of the obtained products into diverse multicomponent reactions to generate, in an unprecedent approach, eight novel products, some of which were also characterized by two-dimensional NMR techniques. The biological properties of such products are under investigation. Full article
Show Figures

Graphical abstract

19 pages, 1074 KiB  
Article
X-ray Structures of Precursors of Styrylpyridine-Derivatives Used to Obtain 4-((E)-2-(Pyridin-2-yl)vinyl)benzamido-TEMPO: Synthesis and Characterization
by Guillermo Soriano-Moro, María Judith Percino, Ana Laura Sánchez, Víctor Manuel Chapela, Margarita Cerón and María Eugenia Castro
Molecules 2015, 20(4), 5793-5811; https://doi.org/10.3390/molecules20045793 - 2 Apr 2015
Cited by 5 | Viewed by 7527
Abstract
The synthesis and characterization of the precursor isomers trans-4-(2-(pyridin-2-yl)vinylbenzaldehyde (I), trans-4-(2-(pyridin-4-yl)vinylbenzaldehyde (II), trans-4-(2-(pyridin-2-yl)vinylbenzoic acid (III) and (E)-4-(2-(pydridin-4-yl)vinylbenzoic acid (IV) are reported. These compounds were prepared in order to obtain trans [...] Read more.
The synthesis and characterization of the precursor isomers trans-4-(2-(pyridin-2-yl)vinylbenzaldehyde (I), trans-4-(2-(pyridin-4-yl)vinylbenzaldehyde (II), trans-4-(2-(pyridin-2-yl)vinylbenzoic acid (III) and (E)-4-(2-(pydridin-4-yl)vinylbenzoic acid (IV) are reported. These compounds were prepared in order to obtain trans-4-((E)-2-(pyridin-2-yl)vinyl)benzamide-TEMPO (V). Compounds I and II were obtained by using a Knoevenagel reaction in the absence of a condensing agent and solvent. Oxidation of the aldehyde group using the Jones reagent afforded the corresponding acid forms III and IV. A condensation reaction with 4-amino-TEMPO using oxalyl chloride/DMF/CH2Cl2 provided the 4-((E)-2-(pyridin-2-yl)vinyl)benzamide-TEMPO. Single crystals of compounds I, II and III were obtained and characterized by X-ray diffraction. Compound I belongs to space group P21/c, a = 12.6674(19) Å, b = 7.2173(11) Å, c = 11.5877(14) Å, b = 97.203(13)° and the asymmetric unit was Z = 4, whereas compound II was in the space group P21, with a = 3.85728(9) Å, b = 10.62375(19) Å, c = 12.8625(2) Å, b = 91.722 (2)° and the asymmetric unit was Z = 2. Compound III crystallized as single colorless needle crystals, belonging to the monoclinic system with space group P21, with Z = 2, with a = 3.89359(7) Å, b = 17.7014(3) Å, c = 8.04530(12) Å, b = 94.4030 (16)°. All compounds were completely characterized by IR, 1H-NMR, EI-MS and UV-Vis. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

Back to TopTop