Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ozonated glycerol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1362 KiB  
Communication
Comparative Study of Ozonated Glycerol and Macrogol Ointment on Bone Matrix Production by Human Osteosarcoma Cell Line Saos-2
by Nobutaka Okusa, Hourei Oh, Kazuya Masuno, Yoshimasa Makita and Yasuhiro Imamura
Materials 2023, 16(10), 3857; https://doi.org/10.3390/ma16103857 - 20 May 2023
Cited by 1 | Viewed by 1665
Abstract
Ozonated glycerol is glycerol containing ozone, has no unpleasant odor, and has a long half-life. To apply ozonated glycerol for clinical use, ozonated macrogol ointment has been developed by adding macrogol ointment to ozonated glycerol to increase the retention in the affected area. [...] Read more.
Ozonated glycerol is glycerol containing ozone, has no unpleasant odor, and has a long half-life. To apply ozonated glycerol for clinical use, ozonated macrogol ointment has been developed by adding macrogol ointment to ozonated glycerol to increase the retention in the affected area. However, the effects of ozone on this macrogol ointment were unclear. The viscosity of the ozonated macrogol ointment was approximately two times higher than that of ozonated glycerol. The effect of the ozonated macrogol ointment on the human osteosarcoma cell line Saos-2 (Saos-2 cells) proliferation, type 1 collagen production, and alkaline phosphatase (ALP) activity were studied. The proliferation of Saos-2 cells was assessed using MTT and DNA synthesis assays. Type 1 collagen production and ALP activity were studied using ELISA and ALP assays. Cells were treated for 24 h with or without 0.05, 0.5, or 5 ppm ozonated macrogol ointment. The 0.5 ppm ozonated macrogol ointment significantly elevated Saos-2 cell proliferation, type 1 collagen production, and ALP activity. These results also showed almost the same trend as for ozonated glycerol. Full article
(This article belongs to the Special Issue Materials for Hard Tissue Repair and Regeneration (Second Volume))
Show Figures

Figure 1

17 pages, 2605 KiB  
Article
Characterization of Triacylglycerol Estolide Isomers Using High-Resolution Tandem Mass Spectrometry with Nanoelectrospray Ionization
by Lukáš Cudlman, Aleš Machara, Vladimír Vrkoslav, Miroslav Polášek, Zuzana Bosáková, Stephen J. Blanksby and Josef Cvačka
Biomolecules 2023, 13(3), 475; https://doi.org/10.3390/biom13030475 - 3 Mar 2023
Cited by 1 | Viewed by 3017
Abstract
Triacylglycerol estolides (TG-EST) are biologically active lipids extensively studied for their anti-inflammatory and anti-diabetic properties. In this work, eight standards of TG-EST were synthesized and systematically investigated by nanoelectrospray tandem mass spectrometry. Mass spectra of synthetic TG-EST were studied with the purpose of [...] Read more.
Triacylglycerol estolides (TG-EST) are biologically active lipids extensively studied for their anti-inflammatory and anti-diabetic properties. In this work, eight standards of TG-EST were synthesized and systematically investigated by nanoelectrospray tandem mass spectrometry. Mass spectra of synthetic TG-EST were studied with the purpose of enabling the unambiguous identification of these lipids in biological samples. TG-EST glycerol sn-regioisomers and isomers with the fatty acid ester of hydroxy fatty acid (FAHFA) subunit branched in the ω-, α-, or 10-position were used. Ammonium, lithium, and sodium adducts of TG-EST formed by nanoelectrospray ionization were subjected to collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD). Product ion spectra allowed for identification of fatty acid (FA) and FAHFA subunits originally linked to the glycerol backbone and distinguished the α-branching site of the FAHFA from other estolide-branching isomers. The ω- and 10-branching sites were determined by combining CID with ozone-induced dissociation (OzID). Lithium adducts provided the most informative product ions, enabling characterization of FA, hydroxy fatty acid (HFA), and FAHFA subunits. Glycerol sn-regioisomers were distinguished based on the relative abundance of product ions and unambiguously identified using CID/OzID of lithium and sodium adducts. Full article
(This article belongs to the Special Issue Bioactive Lipids: Sources, Synthesis, and Biological Roles)
Show Figures

Figure 1

14 pages, 440 KiB  
Article
Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe
by Ana Susmozas, Diego Iribarren and Javier Dufour
Resources 2015, 4(2), 398-411; https://doi.org/10.3390/resources4020398 - 17 Jun 2015
Cited by 51 | Viewed by 9665
Abstract
Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work, the environmental and energy performance [...] Read more.
Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion, global warming, ozone layer depletion, photochemical oxidant formation, land competition, acidification and eutrophication. Furthermore, the cumulative (total and non-renewable) energy demand is calculated, as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected) relevance of the feedstock and impact categories considered, results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming, in contrast to first-generation bioglycerol. Full article
(This article belongs to the Special Issue Alternative Energy Sources in Developing and Developed Regions)
Show Figures

Figure 1

Back to TopTop