Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe
Abstract
:1. Introduction
2. Method: Definition of the Case Studies
2.1. Goal and Scope
2.1.1. GSR System
2.1.2. BSR System
2.2. Data Acquisition
3. Results and Discussion
3.1. Process Simulation as a Source of Inventory Data
Inputs | GSR-H2 | BSR-H2 |
From the technosphere | ||
Feedstock (kg)a | 4.05 | 7.86 |
Feedstock transportation (t·km) | 0.32 | 0.62 |
Methanol (kg) | 0.40 | - |
Sodium hydroxide (kg) | 4.68 × 10−3 | - |
Phosphoric acid (kg) | 3.83 × 10−3 | - |
Water (kg) | 20.64 | 20.59 |
Natural gas (kg CH4) | 0.32 | 1.04 |
SR catalyst (kg) | 1.12 × 10−5 | 9.70 × 10−6 |
WGS catalyst (kg) | 7.71 × 10−5 | 1.71 × 10−4 |
Heat (MJ) | 9.79 | - |
Electricity (kWh) | 0.49 | 0.67 |
From the environment | ||
Air (kg) | 20.11 | 35.27 |
Outputs | GSR-H2 | BSR-H2 |
Product | ||
Hydrogen (kg) | 1.00 | 1.00 |
Waste | ||
Waste to landfill (kg) | 0.43 | 1.81 × 10−4 |
Wastewater (kg) | 11.76 | 10.97 |
Emissions to the air | ||
CO2 (kg) | 13.72 | 16.59 |
3.2. Environmental Characterisation and Life-Cycle Energy Balances
Impact Category | GSR-H2 | BSR-H2 |
---|---|---|
GWP (kg CO2 eq) | 12.65 | 3.79 |
ADP (kg Sb eq) | 5.69 × 10−2 | 4.13 × 10−2 |
ODP (kg CFC-11 eq) | 8.90 × 10−7 | 5.54 × 10−7 |
POFP (kg C2H4 eq) | 5.16 × 10−3 | 6.00 × 10−4 |
LC (m2a) | 21.17 | 7.73 |
AP (kg SO2 eq) | 6.51 × 10−2 | 1.56 × 10−2 |
EP (kg PO43− eq) | 5.26 × 10−2 | 3.20 × 10−3 |
CEDnr (MJ) | 127.33 | 89.34 |
CEDt (MJ) | 344.67 | 466.31 |
3.3. Comparison of the Life-Cycle Performance
4. Conclusions
Acknowledgments
Conflicts of Interest
Acronyms and Abbreviations
ADP | abiotic depletion impact potential |
AP | acidification impact potential |
BSR | bio-oil steam reforming |
BSR-H2 | hydrogen produced through bio-oil steam reforming |
CED | cumulative energy demand |
CEDnr | cumulative non-renewable energy demand |
CEDt | total cumulative energy demand |
CFB | circulating fluidised bed |
CML | Institute of Environmental Sciences of Leiden University |
EP | eutrophication impact potential |
FU | functional unit |
GSR | glycerol steam reforming |
GSR-H2 | hydrogen produced through glycerol steam reforming |
GWP | global warming impact potential |
IPCC | Intergovernmental Panel on Climate Change |
LC | land competition |
LCA | life cycle assessment |
ODP | ozone layer depletion impact potential |
POFP | photochemical oxidant formation impact potential |
PSA | pressure swing adsorption |
RS | rapeseed |
SMR | steam methane reforming |
SMR-H2 | hydrogen produced through steam methane reforming |
SR | steam reforming |
VDI | Verein Deutscher Ingenieure |
WGS | water gas shift |
References
- International Energy Agency. World Energy Outlook 2012; OECD/IEA: Paris, France, 2013. [Google Scholar]
- Dutta, S. A review on production, storage of hydrogen and its utilization as an energy resource. J. Ind. Eng. Chem. 2014, 20, 1148–1156. [Google Scholar]
- Chaubey, R.; Sahu, S.; James, O.O.; Maity, S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sustain. Energy Rev. 2013, 23, 443–462. [Google Scholar]
- Dincer, I. Green methods for hydrogen production. Int. J. Hydrog. Energy 2012, 37, 1954–1971. [Google Scholar] [CrossRef]
- Blasi, A.; Fiorenza, G.; Freda, C.; Calabrò, V. Steam reforming of biofuels for the production of hydrogen-rich gas. In Membranes for Clean and Renewable Power Applications; Gugliuzza, A., Basile, A., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 145–181. [Google Scholar]
- Rossi, C.C.R.S.; Alonso, C.G.; Antunes, O.A.C.; Guirardello, R.; Cardozo-Filho, L. Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production. Int. J. Hydrog. Energy 2009, 34, 323–332. [Google Scholar] [CrossRef]
- Iriondo, A.; Barrio, V.L.; El Doukkali, M.; Cambra, J.F.; Güemez, M.B.; Requies, J.; Arias, P.L.; Sánchez-Sánchez, M.C.; Navarro, R.; Fierro, J.L.G. Biohydrogen production by gas phase reforming of glycerine and ethanol mixtures. Int. J. Hydrog Energy 2012, 37, 2028–2036. [Google Scholar] [CrossRef]
- Dou, B.; Song, Y.; Wang, C.; Chen, H.; Xu, Y. Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges. Renew. Sustain. Energy Rev. 2014, 30, 950–960. [Google Scholar] [CrossRef]
- Trane, R.; Dahl, S.; Skjøth-Rasmussen, M.S.; Jensen, A.D. Catalytic steam reforming of bio-oil. Int. J. Hydrog. Energy 2012, 37, 6447–6472. [Google Scholar] [CrossRef]
- Remón, J.; Broust, F.; Valette, J.; Chhiti, Y.; Alava, I.; Fernandez-Akarregi, A.R.; Arauzo, J.; Garcia, L. Production of a hydrogen-rich gas from fast pyrolysis bio-oils: Comparison between homogeneous and catalytic steam reforming routes. Int. J. Hydrog. Energy 2014, 39, 171–182. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 14040:2006 Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 14044:2006 Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Smitkova, M.; Janíček, F.; Riccardi, J. Life cycle analysis of processes for hydrogen production. Int. J. Hydrog. Energy 2011, 36, 7844–7851. [Google Scholar] [CrossRef]
- Dufour, J.; Serrano, D.P.; Gálvez, J.L.; González, A.; Soria, E.; Fierro, J.L.G. Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources. Int. J. Hydrog. Energy 2012, 37, 1173–1183. [Google Scholar] [CrossRef]
- Cetinkaya, E.; Dincer, I.; Naterer, G.F. Life cycle assessment of various hydrogen production methods. Int. J. Hydrog. Energy 2012, 37, 2071–2080. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Morais, S.; Mata, T.M.; Martins, A.A.; Pinto, G.A.; Costa, C.A.V. Simulation and life cycle assessment of process design alternatives for biodiesel production from waste vegetable oils. J. Cleaner. Prod. 2010, 18, 1251–1259. [Google Scholar] [CrossRef]
- Kaewcharoensombat, U.; Prommetta, K.; Srinophakun, T. Life cycle assessment of biodiesel production from jatropha. J. Taiwan Inst. Chem. Eng. 2011, 42, 454–462. [Google Scholar] [CrossRef]
- Tindall, B.M.; King, D.L. Designing steam reformers for hydrogen production. Hydrocarb. Process. 1994, 73, 69–75. [Google Scholar]
- Sun, S.; Yan, W.; Sun, P.; Chen, J. Thermodynamic analysis of ethanol reforming for hydrogen production. Energy 2012, 44, 911–924. [Google Scholar] [CrossRef]
- Long, R.; Picioccio, K.; Zagoria, A. Optimising hydrogen production and use. PTQ 2011, Q3, 1–12. [Google Scholar]
- Susmozas, A.; Iribarren, D.; Dufour, J. Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production. Int. J. Hydrog. Energy 2013, 38, 9961–9972. [Google Scholar] [CrossRef]
- Peters, J.F.; Iribarren, D.; Dufour, J. Life cycle assessment of pyrolysis oil applications. Biomass Convers. Biorefin. 2015, 5, 1–19. [Google Scholar] [CrossRef]
- Peters, J.F.; Iribarren, D.; Dufour, J. Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel 2015, 139, 441–456. [Google Scholar] [CrossRef]
- Aspen Plus®. Available online: http://www.aspentech.com/products/aspen-plus.aspx (accessed on 1 April 2015).
- Vlysidis, A.; Binns, M.; Webb, C.; Theodoropoulos, C. A techno-economic analysis of biodiesel biorefineries: Assessment of integrated designs for the co-production of fuels and chemicals. Energy 2011, 36, 4671–4683. [Google Scholar] [CrossRef]
- Jungbluth, N.; Chudacoff, M.; Dauriat, A.; Dinkel, F.; Doka, G.; Faist-Emmenegger, M.; Gnansounou, E.; Kljun, N.; Schleiss, K.; Spielmann, M.; et al. Life Cycle Inventories of Bioenergy; Ecoinvent Report No. 17; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Althaus, H.J.; Chudacoff, M.; Hischier, R.; Jungbluth, N.; Osses, M.; Primas, A. Life Cycle Inventories of Chemicals; Ecoinvent Report No. 8; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Dones, R.; Bauer, C.; Bolliger, R.; Burger, B.; Faist-Emmenegger, M.; Frischknecht, R.; Heck, T.; Jungbluth, N.; Röder, A.; Tuchschmid, A. Life Cycle Inventories of Energy Systems: Results for Current Systems in Switzerland and other UCTE Countries; Ecoinvent Report No. 5; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Doka, G. Life Cycle Inventories of Waste Treatment Services; Ecoinvent Report No. 13; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2009. [Google Scholar]
- Goedkoop, M.; Oele, M.; Leijting, J.; Ponsioen, T.; Meijer, E. Introduction to LCA with SimaPro; PRé Consultants: Amersfoort, The Netherlands, 2013. [Google Scholar]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis—Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener-Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Life Cycle Assessment—An Operational Guide to the ISO Standards; Centre of Environmental Science: Leiden, The Netherlands, 2001. [Google Scholar]
- Verein Deutscher Ingenieure. VDI Guideline 4600: Cumulative Energy Demand (KEA)—Terms, Definitions, Methods of Calculation; VDI: Düsseldorf, Germany, 2012. [Google Scholar]
- Dufour, J.; Iribarren, D. Life cycle assessment of biodiesel production from free fatty acid-rich wastes. Renew. Energy 2012, 38, 155–162. [Google Scholar] [CrossRef]
- Hajjaji, N.; Pons, M.N.; Renaudin, V.; Houas, A. Comparative life cycle assessment of eight alternatives for hydrogen production from renewable and fossil feedstock. J. Clean. Prod. 2013, 44, 177–189. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susmozas, A.; Iribarren, D.; Dufour, J. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe. Resources 2015, 4, 398-411. https://doi.org/10.3390/resources4020398
Susmozas A, Iribarren D, Dufour J. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe. Resources. 2015; 4(2):398-411. https://doi.org/10.3390/resources4020398
Chicago/Turabian StyleSusmozas, Ana, Diego Iribarren, and Javier Dufour. 2015. "Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe" Resources 4, no. 2: 398-411. https://doi.org/10.3390/resources4020398
APA StyleSusmozas, A., Iribarren, D., & Dufour, J. (2015). Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe. Resources, 4(2), 398-411. https://doi.org/10.3390/resources4020398