Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = optical fiber photometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8067 KiB  
Article
Microstructured Waveguide Sensors for Point-of-Care Health Screening
by Svetlana S. Konnova, Pavel A. Lepilin, Anastasia A. Zanishevskaya, Alexey Y. Gryaznov, Natalia A. Kosheleva, Victoria P. Ilinskaya, Julia S. Skibina and Valery V. Tuchin
Photonics 2025, 12(4), 399; https://doi.org/10.3390/photonics12040399 - 20 Apr 2025
Viewed by 371
Abstract
Biosensor technologies in medicine, as in many other areas, are replacing labor-intensive methods of monitoring human health. This paper presents the results of experimental studies on label-free sensors based on a hollow core microstructured optical waveguide (HC-MOW) for human blood serum analysis. The [...] Read more.
Biosensor technologies in medicine, as in many other areas, are replacing labor-intensive methods of monitoring human health. This paper presents the results of experimental studies on label-free sensors based on a hollow core microstructured optical waveguide (HC-MOW) for human blood serum analysis. The MOWs with a hollow core of 247.5 µm in diameter were manufactured and used in our work. These parameters allow the hollow core to be filled with high-viscosity solutions due to the capillary properties of the fiber. Calculations of the spectral properties of the HC-MOW fiber were carried out and experimentally confirmed. Twenty-one blood serum samples from volunteers were analyzed using standard photometry (commercial kits) and an experimental biosensor. The obtained transmission spectra were processed by the principal component analysis method and conclusions were drawn about the possibility of using this biosensor in point-of-care medicine. A significant difference was shown between the blood serum of healthy patients and patients with confirmed diagnoses and a long history of cardiovascular system abnormalities. Algorithms for spectra processing using the Origin program are presented. Full article
(This article belongs to the Special Issue Optical Sensors for Advanced Biomedical Applications)
Show Figures

Figure 1

11 pages, 1841 KiB  
Article
Non-Invasive Hybrid Ultrasound Stimulation of Visual Cortex In Vivo
by Chen Gong, Runze Li, Gengxi Lu, Jie Ji, Yushun Zeng, Jiawen Chen, Chifeng Chang, Junhang Zhang, Lily Xia, Deepthi S. Rajendran Nair, Biju B. Thomas, Brian J. Song, Mark S. Humayun and Qifa Zhou
Bioengineering 2023, 10(5), 577; https://doi.org/10.3390/bioengineering10050577 - 10 May 2023
Cited by 7 | Viewed by 3861
Abstract
The optic nerve is the second cranial nerve (CN II) that connects and transmits visual information between the retina and the brain. Severe damage to the optic nerve often leads to distorted vision, vision loss, and even blindness. Such damage can be caused [...] Read more.
The optic nerve is the second cranial nerve (CN II) that connects and transmits visual information between the retina and the brain. Severe damage to the optic nerve often leads to distorted vision, vision loss, and even blindness. Such damage can be caused by various types of degenerative diseases, such as glaucoma and traumatic optic neuropathy, and result in an impaired visual pathway. To date, researchers have not found a viable therapeutic method to restore the impaired visual pathway; however, in this paper, a newly synthesized model is proposed to bypass the damaged portion of the visual pathway and set up a direct connection between a stimulated visual input and the visual cortex (VC) using Low-frequency Ring-transducer Ultrasound Stimulation (LRUS). In this study, by utilizing and integrating various advanced ultrasonic and neurological technologies, the following advantages are achieved by the proposed LRUS model: 1. This is a non-invasive procedure that uses enhanced sound field intensity to overcome the loss of ultrasound signal due to the blockage of the skull. 2. The simulated visual signal generated by LRUS in the visual-cortex-elicited neuronal response in the visual cortex is comparable to light stimulation of the retina. The result was confirmed by a combination of real-time electrophysiology and fiber photometry. 3. VC showed a faster response rate under LRUS than light stimulation through the retina. These results suggest a potential non-invasive therapeutic method for restoring vision in optic-nerve-impaired patients using ultrasound stimulation (US). Full article
(This article belongs to the Special Issue Biomedical Imaging and Analysis of the Eye)
Show Figures

Figure 1

21 pages, 6066 KiB  
Article
Experimental Verification for Numerical Simulation of Thalamic Stimulation-Evoked Calcium-Sensitive Fluorescence and Electrophysiology with Self-Assembled Multifunctional Optrode
by Yao-Wen Liang, Ming-Liang Lai, Feng-Mao Chiu, Hsin-Yi Tseng, Yu-Chun Lo, Ssu-Ju Li, Ching-Wen Chang, Po-Chuan Chen and You-Yin Chen
Biosensors 2023, 13(2), 265; https://doi.org/10.3390/bios13020265 - 13 Feb 2023
Cited by 1 | Viewed by 3473
Abstract
Owing to its capacity to eliminate a long-standing methodological limitation, fiber photometry can assist research gaining novel insight into neural systems. Fiber photometry can reveal artifact-free neural activity under deep brain stimulation (DBS). Although evoking neural potential with DBS is an effective method [...] Read more.
Owing to its capacity to eliminate a long-standing methodological limitation, fiber photometry can assist research gaining novel insight into neural systems. Fiber photometry can reveal artifact-free neural activity under deep brain stimulation (DBS). Although evoking neural potential with DBS is an effective method for mediating neural activity and neural function, the relationship between DBS-evoked neural Ca2+ change and DBS-evoked neural electrophysiology remains unknown. Therefore, in this study, a self-assembled optrode was demonstrated as a DBS stimulator and an optical biosensor capable of concurrently recording Ca2+ fluorescence and electrophysiological signals. Before the in vivo experiment, the volume of tissue activated (VTA) was estimated, and the simulated Ca2+ signals were presented using Monte Carlo (MC) simulation to approach the realistic in vivo environment. When VTA and the simulated Ca2+ signals were combined, the distribution of simulated Ca2+ fluorescence signals matched the VTA region. In addition, the in vivo experiment revealed a correlation between the local field potential (LFP) and the Ca2+ fluorescence signal in the evoked region, revealing the relationship between electrophysiology and the performance of neural Ca2+ concentration behavior. Concurrent with the VTA volume, simulated Ca2+ intensity, and the in vivo experiment, these data suggested that the behavior of neural electrophysiology was consistent with the phenomenon of Ca2+ influx to neurons. Full article
Show Figures

Figure 1

14 pages, 6408 KiB  
Article
Identifying the Photometric Characteristics and Applicability of Hybrid Solar Lighting
by Hyun-Joo Han, Muhammad Uzair Mehmood, Jin-Chul Park, Joo-Won Lee, Sang-Hoon Lim and Seung-Jin Oh
Energies 2022, 15(22), 8356; https://doi.org/10.3390/en15228356 - 9 Nov 2022
Cited by 1 | Viewed by 2232
Abstract
The present research aims at promoting the stability and applicability of a hybrid daylighting system combining daylight and artificial light, which eventually enables a constant and pleasant luminous flux of the mixed light delivered by a terminal device installed indoors. That is, the [...] Read more.
The present research aims at promoting the stability and applicability of a hybrid daylighting system combining daylight and artificial light, which eventually enables a constant and pleasant luminous flux of the mixed light delivered by a terminal device installed indoors. That is, the present system allows a constant amount of luminous flux through its terminal device similar to an electric lamp, demonstrating its energy efficiency as well as comfortableness. The system effectively combines two different types of light, as solar rays are collected by a solar tracking sun light collector. The mixed light is transmitted indoors by optical fiber cables all the way to terminal devices installed indoors and discharged as needed. This feature enables the utilization of daylight to its full capacity, promoting solar availability. In this study, the photometry of hybrid lighting was experimentally measured and analyzed by using a spectrometer for different portions of sunlight when maintaining a constant luminous flux of mixed light. The effectiveness of hybrid lighting was explored for a number of cases in actual conditions, and the system was capable of delivering a constant illuminance of 1200 lux on a plane located 1.1 m away from the terminal device (light emitter). Finally, the system was installed in a test cell to verify its effectiveness for indoor illumination. Full article
Show Figures

Figure 1

15 pages, 3316 KiB  
Article
Optical Fiber-Based Recording of Climbing Fiber Ca2+ Signals in Freely Behaving Mice
by Jiechang Tang, Rou Xue, Yan Wang, Min Li, Hongbo Jia, Janelle M. P. Pakan, Longhui Li, Xiaowei Chen and Xingyi Li
Biology 2022, 11(6), 907; https://doi.org/10.3390/biology11060907 - 13 Jun 2022
Cited by 2 | Viewed by 4042
Abstract
The olivocerebellar circuitry is important to convey both motor and non-motor information from the inferior olive (IO) to the cerebellar cortex. Several methods are currently established to observe the dynamics of the olivocerebellar circuitry, largely by recording the complex spike activity of cerebellar [...] Read more.
The olivocerebellar circuitry is important to convey both motor and non-motor information from the inferior olive (IO) to the cerebellar cortex. Several methods are currently established to observe the dynamics of the olivocerebellar circuitry, largely by recording the complex spike activity of cerebellar Purkinje cells; however, these techniques can be technically challenging to apply in vivo and are not always possible in freely behaving animals. Here, we developed a method for the direct, accessible, and robust recording of climbing fiber (CF) Ca2+ signals based on optical fiber photometry. We first verified the IO stereotactic coordinates and the organization of contralateral CF projections using tracing techniques and then injected Ca2+ indicators optimized for axonal labeling, followed by optical fiber-based recordings. We demonstrated this method by recording CF Ca2+ signals in lobule IV/V of the cerebellar vermis, comparing the resulting signals in freely moving mice. We found various movement-evoked CF Ca2+ signals, but the onset of exploratory-like behaviors, including rearing and tiptoe standing, was highly synchronous with recorded CF activity. Thus, we have successfully established a robust and accessible method to record the CF Ca2+ signals in freely behaving mice, which will extend the toolbox for studying cerebellar function and related disorders. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

14 pages, 46510 KiB  
Article
Wireless Photometry Prototype for Tri-Color Excitation and Multi-Region Recording
by Aatreya Chakravarti, Amin Hazrati Marangalou, Ian Matthew Costanzo, Devdip Sen, Mirco Sciulli, Yusuke Tsuno and Ulkuhan Guler
Micromachines 2022, 13(5), 727; https://doi.org/10.3390/mi13050727 - 30 Apr 2022
Cited by 6 | Viewed by 3166
Abstract
Visualizing neuronal activation and neurotransmitter release by using fluorescent sensors is increasingly popular. The main drawback of contemporary multi-color or multi-region fiber photometry systems is the tethered structure that prevents the free movement of the animals. Although wireless photometry devices exist, a review [...] Read more.
Visualizing neuronal activation and neurotransmitter release by using fluorescent sensors is increasingly popular. The main drawback of contemporary multi-color or multi-region fiber photometry systems is the tethered structure that prevents the free movement of the animals. Although wireless photometry devices exist, a review of literature has shown that these devices can only optically stimulate or excite with a single wavelength simultaneously, and the lifetime of the battery is short. To tackle this limitation, we present a prototype for implementing a fully wireless photometry system with multi-color and multi-region functions. This paper introduces an integrated circuit (IC) prototype fabricated in TSMC 180 nm CMOS process technology. The prototype includes 3-channel optical excitation, 2-channel optical recording, wireless power transfer, and wireless data telemetry blocks. The recording front end has an average gain of 107 dB and consumes 620 μW of power. The light-emitting diode (LED) driver block provides a peak current of 20 mA for optical excitation. The rectifier, the core of the wireless power transmission, operates with 63% power conversion efficiency at 13.56 MHz and a maximum of 87% at 2 MHz. The system is validated in a laboratory bench test environment and compared with state-of-the-art technologies. The optical excitation and recording front end and the wireless power transfer circuit evaluated in this paper will form the basis for a future miniaturized final device with a shank that can be used in in vivo experiments. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Micromachines)
Show Figures

Figure 1

Back to TopTop