Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = opacity of the Sun’s atmosphere

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1038 KiB  
Review
Scattering and Its Applications to Various Atomic Processes: Elastic Scattering, Resonances, Photoabsorption, Rydberg States, and Opacity of the Atmosphere of the Sun and Stellar Objects
by Anand K. Bhatia
Atoms 2020, 8(4), 78; https://doi.org/10.3390/atoms8040078 - 6 Nov 2020
Cited by 2 | Viewed by 3202
Abstract
A scattering process can be a natural process or a process carried out in a laboratory. The scattering of particles from targets has resulted in important discoveries in physics. We discuss various scattering theories of electrons and positrons and their applications to elastic [...] Read more.
A scattering process can be a natural process or a process carried out in a laboratory. The scattering of particles from targets has resulted in important discoveries in physics. We discuss various scattering theories of electrons and positrons and their applications to elastic scattering, resonances, photoabsorption, excitation, and solar and stellar atmospheres. Among the most commonly employed approaches are the Kohn variational principle, close-coupling approximation, method of polarized orbitals, R-matrix formulation, and hybrid theory. In every formulation, an attempt is made to include exchange, long-range and short-range correlations, and to make the approach variationally correct. The present formulation, namely, hybrid theory, which is discussed in greater detail compared to other approximations, includes exchange, long-range correlations, and short-range correlations at the same time, and is variationally correct. It was applied to calculate the phase shifts for elastic scattering, the resonance parameters of two-electron systems, photoabsorption in two-electron systems, excitation of atomic hydrogen by an electron and positron impact, and to study the opacity of the Sun’s atmosphere. Calculations of polarizabilities, Rydberg states, and bound states of atoms are also discussed. Full article
Show Figures

Figure 1

5 pages, 432 KiB  
Article
A Note on the Opacity of the Sun’s Atmosphere
by Anand. K. Bhatia and William. D. Pesnell
Atoms 2020, 8(3), 37; https://doi.org/10.3390/atoms8030037 - 21 Jul 2020
Cited by 2 | Viewed by 3909
Abstract
The opacity of the atmosphere of the Sun is due to processes such as Thomson scattering, bound–bound transitions and photodetachment (bound–free) of hydrogen and positronium ions. The well-studied free–free transitions involving photons, electrons, and hydrogen atoms are re-examined, while free–free transitions involving positrons [...] Read more.
The opacity of the atmosphere of the Sun is due to processes such as Thomson scattering, bound–bound transitions and photodetachment (bound–free) of hydrogen and positronium ions. The well-studied free–free transitions involving photons, electrons, and hydrogen atoms are re-examined, while free–free transitions involving positrons are considered for the first time. Cross sections, averaged over a Maxwellian velocity distribution, involving positrons are comparable to those involving electrons. This indicates that positrons do contribute to the opacity of the atmosphere of the Sun. Accurate results are obtained because definitive phase shifts are known for electron–hydrogen and positron–hydrogen scattering. Full article
(This article belongs to the Special Issue Interactions of Positrons with Matter and Radiation)
Show Figures

Figure 1

18 pages, 342 KiB  
Article
On the Clausius-Duhem Inequality and Maximum Entropy Production in a Simple Radiating System
by Joachim Pelkowski
Entropy 2014, 16(4), 2291-2308; https://doi.org/10.3390/e16042291 - 22 Apr 2014
Cited by 11 | Viewed by 8383
Abstract
A black planet irradiated by a sun serves as the archetype for a simple radiating two-layer system admitting of a continuum of steady states under steadfast insolation. Steady entropy production rates may be calculated for different opacities of one of the layers, explicitly [...] Read more.
A black planet irradiated by a sun serves as the archetype for a simple radiating two-layer system admitting of a continuum of steady states under steadfast insolation. Steady entropy production rates may be calculated for different opacities of one of the layers, explicitly so for the radiative interactions, and indirectly for all the material irreversibilities involved in maintaining thermal uniformity in each layer. The second law of thermodynamics is laid down in two versions, one of which is the well-known Clausius-Duhem inequality, the other being a modern version known as the entropy inequality. By maximizing the material entropy production rate, a state may be selected that always fulfills the Clausius-Duhem inequality. Some formally possible steady states, while violating the latter, still obey the entropy inequality. In terms of Earth’s climate, global entropy production rates exhibit extrema for any “greenhouse effect”. However, and only insofar as the model be accepted as representative of Earth’s climate, the extrema will not be found to agree with observed (effective) temperatures assignable to both the atmosphere and surface. This notwithstanding, the overall entropy production for the present greenhouse effect on Earth is very close to the maximum entropy production rate of a uniformly warm steady state at the planet’s effective temperature. For an Earth with a weak(er) greenhouse effect the statement is no longer true. Full article
(This article belongs to the Special Issue Maximum Entropy Production)
Show Figures

Back to TopTop