Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = oligoadenylate-ribonuclease L

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1286 KB  
Review
Genetic Ethnic Differences in Human 2′-5′-Oligoadenylate Synthetase and Disease Associations: A Systematic Review
by Anmol Gokul, Thilona Arumugam and Veron Ramsuran
Genes 2023, 14(2), 527; https://doi.org/10.3390/genes14020527 - 19 Feb 2023
Cited by 10 | Viewed by 3676
Abstract
Recently, several studies have highlighted a skewed prevalence of infectious diseases within the African continent. Furthermore, a growing number of studies have demonstrated unique genetic variants found within the African genome are one of the contributing factors to the disease severity of infectious [...] Read more.
Recently, several studies have highlighted a skewed prevalence of infectious diseases within the African continent. Furthermore, a growing number of studies have demonstrated unique genetic variants found within the African genome are one of the contributing factors to the disease severity of infectious diseases within Africa. Understanding the host genetic mechanisms that offer protection against infectious diseases provides an opportunity to develop unique therapeutic interventions. Over the past two decades, several studies have linked the 2′-5′-oligoadenylate synthetase (OAS) family with a range of infectious diseases. More recently, the OAS-1 gene has also been associated with disease severity caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to a global pandemic. The OAS family serves as an antiviral factor through the interaction with Ribonuclease-Latent (RNase-L). This review explores the genetic variants observed within the OAS genes and the associations with various viral infections and how previously reported ethnic-specific polymorphisms drive clinical significance. This review provides an overview of OAS genetic association studies with a particular focus on viral diseases affecting individuals of African descent. Full article
(This article belongs to the Special Issue Host Genetics and Infectious Disease)
Show Figures

Figure 1

16 pages, 1735 KB  
Article
ABCE1 Regulates RNase L-Induced Autophagy during Viral Infections
by Barkha Ramnani, Praveen Manivannan, Sarah Jaggernauth and Krishnamurthy Malathi
Viruses 2021, 13(2), 315; https://doi.org/10.3390/v13020315 - 18 Feb 2021
Cited by 11 | Viewed by 5293
Abstract
Host response to a viral infection includes the production of type I interferon (IFN) and the induction of interferon-stimulated genes that have broad antiviral effects. One of the key antiviral effectors is the IFN-inducible oligoadenylate synthetase/ribonuclease L (OAS/RNase L) pathway, which is activated [...] Read more.
Host response to a viral infection includes the production of type I interferon (IFN) and the induction of interferon-stimulated genes that have broad antiviral effects. One of the key antiviral effectors is the IFN-inducible oligoadenylate synthetase/ribonuclease L (OAS/RNase L) pathway, which is activated by double-stranded RNA to synthesize unique oligoadenylates, 2-5A, to activate RNase L. RNase L exerts an antiviral effect by cleaving diverse RNA substrates, limiting viral replication; many viruses have evolved mechanisms to counteract the OAS/RNase L pathway. Here, we show that the ATP-binding cassette E1 (ABCE1) transporter, identified as an inhibitor of RNase L, regulates RNase L activity and RNase L-induced autophagy during viral infections. ABCE1 knockdown cells show increased RNase L activity when activated by 2-5A. Compared to parental cells, the autophagy-inducing activity of RNase L in ABCE1-depleted cells is enhanced with early onset. RNase L activation in ABCE1-depleted cells inhibits cellular proliferation and sensitizes cells to apoptosis. Increased activity of caspase-3 causes premature cleavage of autophagy protein, Beclin-1, promoting a switch from autophagy to apoptosis. ABCE1 regulates autophagy during EMCV infection, and enhanced autophagy in ABCE1 knockdown cells promotes EMCV replication. We identify ABCE1 as a host protein that inhibits the OAS/RNase L pathway by regulating RNase L activity, potentially affecting antiviral effects. Full article
(This article belongs to the Special Issue Interferons in Viral Infections)
Show Figures

Figure 1

1 pages, 138 KB  
Abstract
Activation and Antagonism of the OAS–RNase L Pathway
by Susan R. Weiss
Proceedings 2020, 50(1), 14; https://doi.org/10.3390/proceedings2020050014 - 4 Jun 2020
Cited by 1 | Viewed by 2476
Abstract
The oligoadenylate synthetase–ribonuclease L (OAS–RNase L) system is a potent antiviral pathway that severely limits the pathogenesis of many viruses. Upon sensing dsRNA, OASs produce 2′,5′-oligoadenylates (2-5A) that activate RNase L to cleave both host and viral single-stranded RNA, thereby limiting protein production, [...] Read more.
The oligoadenylate synthetase–ribonuclease L (OAS–RNase L) system is a potent antiviral pathway that severely limits the pathogenesis of many viruses. Upon sensing dsRNA, OASs produce 2′,5′-oligoadenylates (2-5A) that activate RNase L to cleave both host and viral single-stranded RNA, thereby limiting protein production, virus replication and spread, leading to apoptotic cell death. Endogenous host dsRNA, which accumulates in the absence of adenosine deaminase acting on RNA (ADAR)1, can also activate RNase L and lead to apoptotic cell death. RNase L activation and antiviral activity during infections with several types of viruses in human and bat cells is dependent on OAS3 but independent of virus-induced interferon (IFN) and, thus, RNase L can be activated even in the presence of IFN antagonists. Differently from other human viruses examined, Zika virus is resistant to the antiviral activity of RNase L and instead utilizes RNase L to enhance its replication factories to produce more infectious virus. Some betacoronaviruses antagonize RNase L activation by expressing 2′,5′-phosphodiesterases (PDEs) that cleave 2-5A and thereby antagonize activation of RNase L. The best characterized of these PDEs is the murine coronavirus (MHV) NS2 accessory protein. Enzymatically active NS2 is required for replication in myeloid cells and in the liver. Interestingly, while wild type mice clear MHV from the liver by 7–10 days post-infection, RNase L knockout mice fail to effectively clear MHV, probably due to diminished apoptotic death of infected cells. We suggest that RNase L antiviral activity stems from direct cleavage of viral genomes and cessation of protein synthesis as well as through promoting death of infected cells, limiting the spread of virus. Importantly, OASs are pattern recognition receptors and the OAS–RNase L pathway is a primary innate response pathway to viruses, capable of early response, coming into play before IFN is induced or when the virus shuts down IFN signaling. Full article
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)
11 pages, 2908 KB  
Communication
ABCE1 Acts as a Positive Regulator of Exogenous RNA Decay
by Takuto Nogimori, Koichi Ogami, Yuka Oishi, Ryoya Goda, Nao Hosoda, Yoshiaki Kitamura, Yukio Kitade and Shin-ichi Hoshino
Viruses 2020, 12(2), 174; https://doi.org/10.3390/v12020174 - 4 Feb 2020
Cited by 7 | Viewed by 4823
Abstract
The 2′-5′-oligoadenylate synthetase (OAS)/RNase L system protects hosts against pathogenic viruses through cleavage of the exogenous single-stranded RNA. In this system, an evolutionally conserved RNA quality control factor Dom34 (known as Pelota (Pelo) in higher eukaryotes) forms a surveillance complex with RNase L [...] Read more.
The 2′-5′-oligoadenylate synthetase (OAS)/RNase L system protects hosts against pathogenic viruses through cleavage of the exogenous single-stranded RNA. In this system, an evolutionally conserved RNA quality control factor Dom34 (known as Pelota (Pelo) in higher eukaryotes) forms a surveillance complex with RNase L to recognize and eliminate the exogenous RNA in a manner dependent on translation. Here, we newly identified that ATP-binding cassette sub-family E member 1 (ABCE1), which is also known as RNase L inhibitor (RLI), is involved in the regulation of exogenous RNA decay. ABCE1 directly binds to form a complex with RNase L and accelerates RNase L dimer formation in the absence of 2′-5′ oligoadenylates (2-5A). Depletion of ABCE1 represses 2-5A-induced RNase L activation and stabilizes exogenous RNA to a level comparable to that seen in RNase L depletion. The increased half-life of the RNA by the single depletion of either protein is not significantly affected by the double depletion of both proteins, suggesting that RNase L and ABCE1 act together to eliminate exogenous RNA. Our results indicate that ABCE1 functions as a positive regulator of exogenous RNA decay rather than an inhibitor of RNase L. Full article
(This article belongs to the Special Issue Viruses and the OAS-RNase L Pathway)
Show Figures

Graphical abstract

19 pages, 958 KB  
Meeting Report
The 18th Rocky Mountain Virology Association Meeting
by Joel Rovnak, Laura A. St. Clair, Kirsten Krieger, Elena Lian, Rushika Perera and Randall J. Cohrs
Viruses 2019, 11(1), 4; https://doi.org/10.3390/v11010004 - 21 Dec 2018
Viewed by 4616
Abstract
This autumn, approximately 100 scientists and students from the Rocky Mountain area along with invited speakers attended the 18th annual meeting of the Rocky Mountain Virology Association that was held at the Colorado State University Mountain Campus. The two-day gathering featured 31 talks [...] Read more.
This autumn, approximately 100 scientists and students from the Rocky Mountain area along with invited speakers attended the 18th annual meeting of the Rocky Mountain Virology Association that was held at the Colorado State University Mountain Campus. The two-day gathering featured 31 talks and 33 posters all of which focused on specific areas of current virology and prion protein research. Since the keynote presentation focused on the oligoadenylate synthetase-ribonuclease L pathway the main area of focus was on host–virus interactions, however other areas of interest included virus vectors, current models of virus infections, prevention and treatment of virus infections, separate sessions on RNA viruses and prion proteins, and a special talk highlighting various attributes of targeted next-generation sequencing. The meeting was held at the peak of the fall Aspen colors surrounded by five mountains >11000 ft (3.3 km) where the secluded campus provided the ideal setting for extended discussions and outdoor exercise. On behalf of the Rocky Mountain Virology Association, this report summarizes 42 selected presentations. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop