Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = oilseed radish oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6712 KiB  
Article
The Response of the Mycobiome to the Biofumigation of Replanted Soil in a Fruit Tree Nursery
by Robert Wieczorek, Zofia Zydlik, Agnieszka Wolna-Maruwka, Adrianna Kubiak, Jan Bocianowski and Alicja Niewiadomska
Agronomy 2024, 14(9), 1961; https://doi.org/10.3390/agronomy14091961 - 29 Aug 2024
Cited by 3 | Viewed by 1048
Abstract
In a long-term monoculture with fruit trees and tree nurseries, it is necessary to regenerate the soil due to the risk of apple replant disease (ARD). The occurrence of ARD is manifested in the structure of the mycobiome. The assumption of our experiment [...] Read more.
In a long-term monoculture with fruit trees and tree nurseries, it is necessary to regenerate the soil due to the risk of apple replant disease (ARD). The occurrence of ARD is manifested in the structure of the mycobiome. The assumption of our experiment was that the use of oil radish (Raphanus sativus var. oleifera), white mustard (Sinapis alba), and marigold (Tagetes patula L.) as phytosanitary plants for biofumigation would provide crops with nutrients, improve soil physicochemical properties, and influence the diversity of microbiota, including fungal networks, towards a beneficial mycobiome. Metagenomic analysis of fungal populations based on the hypervariable ITS1 region was used for assessing changes in the soil mycobiome. It showed that biofumigation, mainly with a forecrop of marigold (Tagetes patula L.) (R3), caused an improvement in soil physicochemical properties (bulk density and humus) and the highest increase in the abundance of operational taxonomic units (OTUs) of the Fungi kingdom, which was similar to that of agriculturally undegraded soils, and amounted to 54.37%. In this variant of the experiment, the most OTUs were identified at the phylum level, for Ascomycota (39.82%) and Mortierellomycota beneficial fungi (7.73%). There were no such dependencies in the soils replanted with forecrops of oilseed radish (Raphanus sativus var. oleifera) and white mustard (Sinapis alba). Biofumigation with marigold and oil radish contributed to a reduction in the genus Fusarium, which contains several significant plant-pathogenic species. The percentages of operational taxonomic units (OTUs) of Fusarium spp. decreased from 1.57% to 0.17% and 0.47%, respectively. Full article
Show Figures

Figure 1

21 pages, 2743 KiB  
Article
Oilseed Radish: Nitrogen and Sulfur Management Strategies for Seed Yield and Quality—A Case Study in Poland
by Artur Szatkowski, Zofia Antoszkiewicz, Cezary Purwin and Krzysztof Józef Jankowski
Agriculture 2024, 14(5), 755; https://doi.org/10.3390/agriculture14050755 - 13 May 2024
Cited by 4 | Viewed by 2225
Abstract
Nitrogen (N) and sulfur (S) fertilization significantly affect seed yield and quality in Brassica oilseed crops. The effect of N and S management on the crop parameters (plant height, stem-base diameter, and number of branches), yield (seed yield components, seed and straw yields, [...] Read more.
Nitrogen (N) and sulfur (S) fertilization significantly affect seed yield and quality in Brassica oilseed crops. The effect of N and S management on the crop parameters (plant height, stem-base diameter, and number of branches), yield (seed yield components, seed and straw yields, harvest index—HI), and the quality of the seeds and oil (crude fat—CF, total protein—TP, crude fiber—CFR, fatty acids profile—FA, acid detergent fiber; and neutral detergent fiber) of oilseed radish (Raphanus sativus L. var. oleiformis Pers.) was analyzed in the study. The effect of N and S fertilization was evaluated in a field experiment in Bałcyny (north-eastern Poland) in 2020–2022. The experiment had a split-plot design with two factors and three replications. The first factor was the N rate (0, 30, 60, 90, 120 kg ha−1) and the second factor was the S rate (0, 15, 30 kg ha−1). Nitrogen fertilization stimulated stem elongation and branching. The average oilseed radish (OSR) seed yield ranged from 0.59 to 1.15–1.25 Mg ha−1. Seed yields increased significantly, up to 90 kg N ha−1 and 15 kg S ha−1. The N fertilizer use efficiency (NFUE) of OSR decreased with a rise in the N rate (from 4.22 to 2.19 kg of seeds per 1 kg N). The application of S did not increase NFUE. The HI ranged from 10% (0–30 kg N ha−1) to 12% (60 kg N ha−1). The contents of CF, TP, and CFR in OSR seeds (kg−1 dry matter—DM) were 383–384 g, 244–249 g, and 97–103 g, respectively. Nitrogen fertilization decreased the CF content (by 5%) and increased the contents of TP (by 5%) and CFR (by 16%) in OSR seeds. Sulfur fertilizer applied at 30 kg ha−1 decreased the CF content (by 2%), but it did not alter the content of TP or CFR. Oilseed radish oil contained 68–70% of monounsaturated FAs (MUFAs) (erucic acid accounted for 2/3 of the total MUFAs), 24–25% of polyunsaturated FAs (PUFAs), and 6–8% of saturated FAs (SFAs). Nitrogen fertilization increased the proportions of SFAs and PUFAs in OSR oil. Nitrogen rates of 60–90 kg ha−1 increased the contents of alpha-tocopherol (α-T), beta-tocopherol (β-T), and gamma-tocopherol (γ-T) in OSR seeds by 32%, 40%, and 27%, respectively. Sulfur fertilization increased the content of PUFAs and decreased the content of MUFAs in OSR oil, while it increased the contents of α-T (by 15%) and γ-T (by 19%) in OSR seeds. Proper N and S management in OSR cultivation can improve crop productivity and the processing suitability of seeds. Full article
Show Figures

Figure 1

16 pages, 4123 KiB  
Article
Hemp Seed Oil and Oilseed Radish Oil as New Sources of Raw Materials for the Synthesis of Bio-Polyols for Open-Cell Polyurethane Foams
by Krzysztof Polaczek and Maria Kurańska
Materials 2022, 15(24), 8891; https://doi.org/10.3390/ma15248891 - 13 Dec 2022
Cited by 14 | Viewed by 2399
Abstract
We report on the development of open-cell polyurethane foams based on bio-polyols from vegetable oils: hemp seed oil, oilseed radish oil, rapeseed oil and used rapeseed cooking oil. The crude oils were pressed from seeds and subjected to an optimal solvent-free epoxidation process. [...] Read more.
We report on the development of open-cell polyurethane foams based on bio-polyols from vegetable oils: hemp seed oil, oilseed radish oil, rapeseed oil and used rapeseed cooking oil. The crude oils were pressed from seeds and subjected to an optimal solvent-free epoxidation process. Bio-polyols were obtained by a ring-opening reaction using diethylene glycol and tetrafluoroboric acid as catalysts. The resultant foams were analysed in terms of their apparent density, thermal conductivity coefficient, mechanical strength, closed cell content, short-term water absorption and water vapour permeability, while their morphology was examined using scanning electron microscopy. It was found that regardless of the properties of the oils, especially the content of unsaturated bonds, it was possible to obtain bio-polyols with very similar properties. The foams were characterized by apparent densities ranging from 11.2 to 12.1 kg/m3, thermal conductivity of <39 mW/m∙K, open cell contents of >97% and high water vapour permeability. Full article
(This article belongs to the Special Issue Novel Resin Composites and Biomaterials)
Show Figures

Figure 1

Back to TopTop