Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (130)

Search Parameters:
Keywords = oil workers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3032 KiB  
Article
Severe Scrub Typhus with Acute Kidney Injury: Urine PCR Evidence from an East Coast Malaysian Cluster
by Siti Roszilawati Ramli, Nuridayu Arifin, Mohd Fahmi Ismail, Shirley Yi Fen Hii, Nur Suffia Sulaiman, Ernieenor Faraliana Che Lah and Nik Abdul Hadi Nik Abdul Aziz
Trop. Med. Infect. Dis. 2025, 10(8), 208; https://doi.org/10.3390/tropicalmed10080208 - 25 Jul 2025
Viewed by 487
Abstract
Background: Scrub typhus (ST) is caused by Orientia tsutsugamushi (OT) infection, which is transmitted to humans through the bites of infected chiggers. The clinical presentations range from mild to life-threatening multi-organ dysfunction. This report describes a cluster of ST cases involving five oil [...] Read more.
Background: Scrub typhus (ST) is caused by Orientia tsutsugamushi (OT) infection, which is transmitted to humans through the bites of infected chiggers. The clinical presentations range from mild to life-threatening multi-organ dysfunction. This report describes a cluster of ST cases involving five oil palm estate workers in Pekan district, Pahang, Malaysia. Methods: The clinical history, laboratory, and entomological investigation were conducted on the patients, including the index case and four suspected cases in the cluster. Polymerase chain reaction (PCR) tests for OT and genotyping were performed on the patients’ blood and urine samples. Serological testing by indirect immunoperoxidase (IIP) test against Rickettsial diseases was also conducted. Principal Findings: Patients presented with fever, myalgia, headache, rash, cough, and eschar. The index case developed severe ST complicated by acute kidney injury (AKI) and respiratory distress, requiring intubation and ventilation at the intensive care unit of a tertiary hospital. ST was confirmed through PCR analysis of a urine sample, showcasing a novel diagnostic approach. The other four cases were confirmed by a four-fold rise in immunoglobulin G (IgG) antibody titers. Conclusions: oil palm estate workers are at high risk for chigger exposure in Malaysia. Awareness among clinicians and the public of ST is crucial for effective prevention, accurate diagnosis, and optimal management. Full article
Show Figures

Figure 1

18 pages, 9628 KiB  
Article
Determining the Optimum Harvest Point in Oil Palm Interspecific Hybrids (O × G) to Maximize Oil Content
by Hernán Mauricio Romero, Rodrigo Ruiz-Romero, Arley Fernando Caicedo-Zambrano, Iván Ayala-Diaz and Jenny Liset Rodríguez
Agronomy 2025, 15(4), 887; https://doi.org/10.3390/agronomy15040887 - 1 Apr 2025
Viewed by 921
Abstract
Elaeis oleifera and Elaeis guineensis, two oil palm species capable of intercrossing to produce interspecific Elaeis oleifera × Elaeis guineensis (O × G) hybrids, exhibit genetic variability in key agronomic traits such as fruit development, oil accumulation, and bunch composition. This variability [...] Read more.
Elaeis oleifera and Elaeis guineensis, two oil palm species capable of intercrossing to produce interspecific Elaeis oleifera × Elaeis guineensis (O × G) hybrids, exhibit genetic variability in key agronomic traits such as fruit development, oil accumulation, and bunch composition. This variability influences the productivity and oil quality of the resulting hybrids. Harvesting, a critical practice in oil palm production, significantly impacts oil yield and quality. Therefore, this study aimed to ascertain the optimum harvest point (OHP) in widely cultivated O × G hybrids and its correlation with genetic backgrounds. The O × G cultivars, “Coari × La Mé” (C × LM), “Manaos × Compacta” (M × C), and “Brazil × Djongo” (B × DJ), were examined to identify notable changes during various phenological stages of bunch ripening using the O × G BBCH scale, a standardized system for describing plant growth stages based on phenological development. The research was conducted in the Southwest Colombian oil palm zone during dry and rainy seasons. Observations revealed distinctive fruit coloration patterns and increased bunch weights throughout the maturation process. However, final fruit coloration did not consistently align with maximum oil rates, indicating it as an unsuitable descriptor for OHP. The C × LM cultivar exhibited the shortest ripening period (173 days after anthesis, DAA), while M × C showed the longest at 207 DAA, followed by B × DJ at 187 DAA. Pollination efficiency varied among cultivars, with C × LM and M × C displaying higher proportions of parthenocarpic fruits. Findings suggest harvesting can occur for all cultivars between phenological stages 807 and 809—corresponding to late maturity stages in fruit development—regardless of the time of year, when maximum oil per bunch is attained. Fruit opacity, fruit cracking, and fruit detachment at stages 807 and 809 were identified as pivotal descriptors for determining the right OHP, albeit unique to each cultivar. Implementing two of these three descriptors by field workers will likely result in the highest oil yields for O × G cultivars. In conclusion, this research provides valuable insights into optimizing oil palm harvest practices, emphasizing the importance of considering genetic variability and phenological indicators for determining the optimum harvest point in interspecific O × G hybrids. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

31 pages, 531 KiB  
Review
Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests
by Virginia Elena Masiulionis and Richard Ian Samuels
Agriculture 2025, 15(6), 642; https://doi.org/10.3390/agriculture15060642 - 18 Mar 2025
Viewed by 1699
Abstract
Concerns about the environmental and health risks of synthetic insecticides are driving the search for alternative pest control methods. Leaf-cutting ants (LCAs), one of the most significant pests in the neotropics, cause substantial economic damage to agriculture and present challenges for control due [...] Read more.
Concerns about the environmental and health risks of synthetic insecticides are driving the search for alternative pest control methods. Leaf-cutting ants (LCAs), one of the most significant pests in the neotropics, cause substantial economic damage to agriculture and present challenges for control due to their complex biology and ecology. While chemical control remains the primary strategy, its intensive use has negative environmental impacts, promotes pest resistance, and endangers non-target species, including plants, animals, and humans. This review describes the biology of LCAs, examines traditional control methods and suggests alternative strategies such as the use of entomopathogenic fungi (EPFs) combined with sublethal doses of insecticides, plant essential oils (EOs), and RNAi techniques. Here, we emphasize the need to address LCA management sustainably by investigating the biology and ecology at both the “colony” and “individual” levels. Colony-level factors include morphology, life cycle, behavior, division of labor, and nest structure, while individual-level mechanisms involve sensory, biochemical, and behavioral adaptations for garden sterilization and decontamination. This review also highlights the potential of sublethal insecticide doses combined with EPFs to induce behavioral changes and worker mortality, and it details the mode of action of EOs and the use of RNAi as promising control strategies. The integration of biological and chemical approaches could offer sustainable alternatives to synthetic insecticides. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
19 pages, 8397 KiB  
Article
Risk Assessment of Effects of Essential Oils on Honey Bees (Apis mellifera L.)
by Joel Caren, Yu-Cheng Zhu, Quentin D. Read and Yuzhe Du
Insects 2025, 16(3), 303; https://doi.org/10.3390/insects16030303 - 14 Mar 2025
Viewed by 1160
Abstract
The toxicity of synthetic pesticides to non-target organisms has prompted a shift towards more environmentally friendly agricultural pest control methods, including the use of essential oils as possible biopesticides. Before these natural chemicals can be widely adopted for protecting food supplies and human [...] Read more.
The toxicity of synthetic pesticides to non-target organisms has prompted a shift towards more environmentally friendly agricultural pest control methods, including the use of essential oils as possible biopesticides. Before these natural chemicals can be widely adopted for protecting food supplies and human health, it is crucial to evaluate their impacts on pollinators, such as honey bees. In this study, we examined the effects of one commercially available essential oil mixture (EcoTec+) and four essential oil components (β-bisabolene, cinnamaldehyde, 1,8-cineole, and eugenol) on honey bee workers using feeding or spray treatment. We then assessed the responses of esterase (EST), glutathione-S-transferase (GST), acetylcholine esterase (AChE), and P450. EcoTec+ increased the P450 transcript, while bisabolene inhibited EST and AChE, increased GST, and caused a mixed P450 response without being lethal. Cinnamaldehyde exhibited toxicity when ingested, suppressing P450 and eliciting a mixed response in AChE. Cineole inhibited EST but caused a mixed P450 response. Eugenol suppressed EST and AChE and was toxic on contact. We also assayed combinations of each compound with four synthetic formulations representative of the major pesticide categories, though no significant interactions were found. Overall, the essential oils tested did not cause acute lethal toxicity to honey bees; however, their biochemical effects varied, mostly remaining sublethal. These findings suggest that these essential oils could be considered safe for use around honey bees. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

28 pages, 13963 KiB  
Article
Biopatinas on Peperino Stone: Three Eco-Friendly Methods for Their Control and Multi-Technique Approach to Evaluate Their Efficacy
by Daniela Isola, Giuseppe Capobianco, Valery Tovazzi, Claudia Pelosi, Oriana Trotta, Silvia Serranti, Luca Lanteri, Laura Zucconi and Valeria Spizzichino
Microorganisms 2025, 13(2), 375; https://doi.org/10.3390/microorganisms13020375 - 8 Feb 2025
Cited by 1 | Viewed by 1183
Abstract
In restoration practice, direct methods become necessary when indirect methods fail and when aesthetic, chemical, or physical biodeteriorative effects threaten the integrity and legibility of the artifact. More effective methods that prioritize the health of workers and the environment are essential for the [...] Read more.
In restoration practice, direct methods become necessary when indirect methods fail and when aesthetic, chemical, or physical biodeteriorative effects threaten the integrity and legibility of the artifact. More effective methods that prioritize the health of workers and the environment are essential for the outdoor stone monument’s conservation. Although several low-impact methods have been proposed, more case studies are needed to address different biopatina types, products, and lithic substrates. Within the COLLINE Project we focused on peperino, a dark volcanic stone widely used in central Italy since the 7th century BCE, because it has been poorly investigated in terms of diversity of biodeteriogens and low-impact methods for their removal. Direct observation, culture methods, and molecular identification have been applied for the identification of biodeteriogens with particular attention to black meristematic fungi. Three low-impact products, namely a dimethyl sulfoxide (DMSO)-based gel, BioTersus® (essential oil-based), and Nasier (enzyme-based) were tested in ex situ (on a colonized slab) and in situ trials (on the pulpit of the S. Francesco alla Rocca Basilica, Viterbo, Italy). Three analytical methods, namely reflectance spectroradiometry, laser-induced fluorescence (LIF), and hypercolorimetric multispectral imaging (HMI) were used to test the cleaning efficacy. Results evidenced the strong influence of direct irradiation and water availability in the balance and distribution of phototrophs, fungi, and lichens. The low-impact cleaning methods, particularly the DMSO-based gel and BioTersus®, effectively remove biodeteriogens from peperino stone while preserving its integrity, offering sustainable solutions for cultural heritage conservation. The instrumental analyses showed that reflectance spectroradiometry and LIF effectively validated the cleaning efficacy, albeit with different sensibility, while HMI, despite spatial constraints, confirmed the three tested cleaning methods do not interfere with peperino stone. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

12 pages, 280 KiB  
Article
Insecticidal and Repellent Activity of Piper crassinervium Essential Oil and Its Pure Compounds Against Imported Fire Ants (Hymenoptera: Formicidae)
by Farhan Mahmood Shah, Mei Wang, Jianping Zhao, Joseph Lee, Paulo Vitor Farago, Jane Manfron, Ikhlas A. Khan and Abbas Ali
Molecules 2024, 29(22), 5430; https://doi.org/10.3390/molecules29225430 - 18 Nov 2024
Viewed by 1213
Abstract
Piper crassinervium Kunth (Piperaceae) essential oil (EO) was evaluated for its toxicity and repellency against red imported fire ants (RIFA), Solenopsis invicta Buren, and a hybrid (HIFA) of red (S. invicta) and black (S. richteri Forel) imported fire ants. Through bioactivity-guided [...] Read more.
Piper crassinervium Kunth (Piperaceae) essential oil (EO) was evaluated for its toxicity and repellency against red imported fire ants (RIFA), Solenopsis invicta Buren, and a hybrid (HIFA) of red (S. invicta) and black (S. richteri Forel) imported fire ants. Through bioactivity-guided fractionation, two major components, elemicin and myristicin, were isolated from the EO. Removal of treated sand in a digging bioassay was used as the criterion for repellency. The EO showed significantly higher repellency at concentrations of 7.8 µg/g against RIFA and HIFA workers, as compared to the DEET (N,N-diethyl-meta-toluamide) or ethanol control. Elemicin exhibited repellency at 3.9 and 7.8 µg/g against RIFA and HIFA workers, respectively, whereas myristicin was active at 7.8 µg/g against both species. DEET failed at 31.25 µg/g against RIFA and 15.6 µg/g against HIFA. The EO showed LC50 values of 97.9 and 73.7 µg/g against RIFA and HIFA workers, respectively. Myristicin was more toxic against RIFA and HIFA with LC50 values of 54.3 and 35.3 µg/g, respectively. Elemicin showed 20–40% mortality at the highest screening dose of 125 µg/g. Fipronil exhibited the highest toxicity against RIFA and HIFA, with LC50 of 0.43 and 0.51 µg/g, respectively. Different formulations of these natural products should be evaluated to explore their use potential under natural field conditions. Full article
10 pages, 893 KiB  
Article
Exposure to Gas Flaring Among Residents of Oil-Producing Communities in Bayelsa State, Niger Delta Region of Nigeria: A Cross-Sectional Study of Haematological Indices
by Domotimi James Jato, Felix M. Onyije, Osaro O. Mgbere and Godwin Ovie Avwioro
J 2024, 7(4), 472-481; https://doi.org/10.3390/j7040028 - 11 Nov 2024
Viewed by 1813
Abstract
Air pollution contributes significantly to morbidity and mortality globally. The Niger Delta Region of Nigeria flares the second largest amount of natural gas in the world, with residents of oil-producing communities bearing the burden of outdoor pollution that may have adverse effects on [...] Read more.
Air pollution contributes significantly to morbidity and mortality globally. The Niger Delta Region of Nigeria flares the second largest amount of natural gas in the world, with residents of oil-producing communities bearing the burden of outdoor pollution that may have adverse effects on their health and well-being. Our study aimed to investigate the haematological indices of residents of a selected gas-flaring site. We conducted a cross-sectional study, wherein a total of eighty adults aged 24 to 73 years were recruited from communities located within a radius of approximately 5 to 10 km from the gas-flaring facility. Blood specimens were collected from consenting participants and analysed for various haematological parameters, including Red Blood Cell (RBC) count, Packed Cell Volume (PCV), Haemoglobin (HB), Mean Cell Haemoglobin (MCH), platelet count (PLT), White Blood Cell (WBC) count, neutrophil (NEU), lymphocytes (LYMs), and Monocyte + Basophil + Eosinophil (MXD). The analysis was performed using an automated Sysmex KX21N haematological analyser. Overall, there was a significant decrease in RBC counts (p < 0.001) and a significant elevation in WBCs (p < 0.001) among people residing within a 5 km radius compared to those residing within a 10 km radius. About 42.5% of males residing within a 5 Km radius exhibited low RBC counts in contrast to only 15% of males residing within a 10 km radius. The WBC levels were found to be significantly higher (p < 0.001) than the reference range among both males and females residing within a 5 km radius compared to those residing at a distance of 10 km. In the female population, 15% of individuals residing within a 5 km and 10 Km radius exhibited RBC levels below the reference category, while 7.5% showed RBC levels above the reference range. Exposure to gas flaring may alter haematological indices. It is, therefore, recommended that a comprehensive longitudinal study be conducted among residents of oil-producing communities and workers at gas-flaring facilities in the Niger Delta region of Nigeria to assess the potential environmental and health implications of their exposure to chemical pollutants. Full article
(This article belongs to the Special Issue Feature Papers of J—Multidisciplinary Scientific Journal in 2024)
Show Figures

Figure 1

14 pages, 2349 KiB  
Communication
IoT Leak Detection System for Onshore Oil Pipeline Based on Thermography
by Danielle Mascarenhas Maia, João Vitor Silva Mendes, João Pedro Almeida Miranda Silva, Rodrigo Freire Bastos, Matheus dos Santos Silva, Reinaldo Coelho Mirre, Thamiles Rodrigues de Melo and Herman Augusto Lepikson
Sensors 2024, 24(21), 6960; https://doi.org/10.3390/s24216960 - 30 Oct 2024
Cited by 1 | Viewed by 3498
Abstract
The vast expanses of remote onshore areas in oil-producing countries are home to a network of flow and collection pipelines that are susceptible to leaks. Most of these areas lack the infrastructure to enable the use of remote monitoring systems equipped with sensors [...] Read more.
The vast expanses of remote onshore areas in oil-producing countries are home to a network of flow and collection pipelines that are susceptible to leaks. Most of these areas lack the infrastructure to enable the use of remote monitoring systems equipped with sensors and real-time data analysis to provide early detection of anomalies. This paper proposes a proof of concept for a monitoring system based on the Internet of Things (IoT) for real-time detection of pipeline leaks in onshore oil production fields. The proposed system, based on a thermal imaging leak detection method, informs the operator of the system’s operating status via a web page. The leak detection system communicates via a Zigbee network between the IoT devices and a 4G mobile network. The results of the tests carried out show that a visual and automatic IoT-based leak detection system is possible and plausible. The proposed leak detection system enables supervisors at remote stations and field workers to monitor the operating status of pipelines via computers, tablets, or smartphones, regardless of where they are. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

18 pages, 4783 KiB  
Article
Designing a Hybrid Energy-Efficient Harvesting System for Head- or Wrist-Worn Healthcare Wearable Devices
by Zahra Tohidinejad, Saeed Danyali, Majid Valizadeh, Ralf Seepold, Nima TaheriNejad and Mostafa Haghi
Sensors 2024, 24(16), 5219; https://doi.org/10.3390/s24165219 - 12 Aug 2024
Cited by 4 | Viewed by 3021
Abstract
Battery power is crucial for wearable devices as it ensures continuous operation, which is critical for real-time health monitoring and emergency alerts. One solution for long-lasting monitoring is energy harvesting systems. Ensuring a consistent energy supply from variable sources for reliable device performance [...] Read more.
Battery power is crucial for wearable devices as it ensures continuous operation, which is critical for real-time health monitoring and emergency alerts. One solution for long-lasting monitoring is energy harvesting systems. Ensuring a consistent energy supply from variable sources for reliable device performance is a major challenge. Additionally, integrating energy harvesting components without compromising the wearability, comfort, and esthetic design of healthcare devices presents a significant bottleneck. Here, we show that with a meticulous design using small and highly efficient photovoltaic (PV) panels, compact thermoelectric (TEG) modules, and two ultra-low-power BQ25504 DC-DC boost converters, the battery life can increase from 9.31 h to over 18 h. The parallel connection of boost converters at two points of the output allows both energy sources to individually achieve maximum power point tracking (MPPT) during battery charging. We found that under specific conditions such as facing the sun for more than two hours, the device became self-powered. Our results demonstrate the long-term and stable performance of the sensor node with an efficiency of 96%. Given the high-power density of solar cells outdoors, a combination of PV and TEG energy can harvest energy quickly and sufficiently from sunlight and body heat. The small form factor of the harvesting system and the environmental conditions of particular occupations such as the oil and gas industry make it suitable for health monitoring wearables worn on the head, face, or wrist region, targeting outdoor workers. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Health Monitoring and Analysis)
Show Figures

Figure 1

19 pages, 6469 KiB  
Article
The Influence of Fatigue, Recovery, and Environmental Factors on the Body Stability of Construction Workers
by Daehwi Jo and Hyunsoo Kim
Sensors 2024, 24(11), 3469; https://doi.org/10.3390/s24113469 - 28 May 2024
Cited by 5 | Viewed by 2672
Abstract
In the construction industry, falls, slips, and trips (FST) account for 42.3% of all accidents. The primary cause of FST incidents is directly related to the deterioration of workers’ body stability. To prevent FST-related accidents, it is crucial to understand the interaction between [...] Read more.
In the construction industry, falls, slips, and trips (FST) account for 42.3% of all accidents. The primary cause of FST incidents is directly related to the deterioration of workers’ body stability. To prevent FST-related accidents, it is crucial to understand the interaction between physical fatigue and body stability in construction workers. Therefore, this study investigates the impact of fatigue on body stability in various construction site environments using Dynamic Time Warping (DTW) analysis. We conducted experiments reflecting six different fatigue levels and four environmental conditions. The analysis process involves comparing changes in DTW values derived from acceleration data obtained through wearable sensors across varying fatigue levels and construction environments. The results reveal the following changes in DTW values across different environments and fatigue levels: for non-obstacle, obstacle, water, and oil conditions, DTW values tend to increase as fatigue levels rise. In our experiments, we observed a significant decrease in body stability against external environments starting from fatigue Levels 3 or 4 (30% and 40% of the maximum failure point). In the non-obstacle condition, the DTW values were 9.4 at Level 0, 12.8 at Level 3, and 23.1 at Level 5. In contrast, for the oil condition, which exhibited the highest DTW values, the values were 10.5 at Level 0, 19.1 at Level 3, and 34.5 at Level 5. These experimental results confirm that the body stability of construction workers is influenced by both fatigue levels and external environmental conditions. Further analysis of recovery time, defined as the time it takes for body stability to return to its original level, revealed an increasing trend in recovery time as fatigue levels increased. This study quantitatively demonstrates through wearable sensor data that, as fatigue levels increase, workers experience decreased body stability and longer recovery times. The findings of this study can inform individual worker fatigue management in the future. Full article
(This article belongs to the Special Issue Body Sensor Networks and Wearables for Health Monitoring)
Show Figures

Figure 1

17 pages, 4259 KiB  
Article
Sustainability Analysis of Smallholder Oil Palm Plantations in Several Provinces in Indonesia
by Jajang Supriatna, Djumarno Djumarno, Ahmad Badawy Saluy and Deden Kurniawan
Sustainability 2024, 16(11), 4383; https://doi.org/10.3390/su16114383 - 22 May 2024
Cited by 8 | Viewed by 3735
Abstract
The cultivation of oil palm plantations as a strategy for regional and rural development in Indonesia has significantly strengthened the economic system and livelihoods of agricultural communities. However, despite its growth, sustainability challenges persist, as evidenced through issues such as deforestation, labor concerns, [...] Read more.
The cultivation of oil palm plantations as a strategy for regional and rural development in Indonesia has significantly strengthened the economic system and livelihoods of agricultural communities. However, despite its growth, sustainability challenges persist, as evidenced through issues such as deforestation, labor concerns, land conflicts, and low worker welfare. The purpose of this study is to evaluate the index and sustainability status of smallholder oil palm plantations in several provinces of Indonesia, as well as to evaluate the index and sustainability status in each dimension (i.e., economic, social, environmental, institutional, and technological). After conducting a structured survey of oil palm farmers who have been operating a plantation for more than 1 year and are members of the Indonesian Planter Society, yielding responses of 757 farmers from Riau, West Kalimantan, Central Kalimantan, and Bangka Belitung Islands provinces, a multidimensional scaling method was utilized to assess the values of the sustainability index, considering attributes related to economic, ecological, social, technological, and institutional factors. The resulting sustainability index is 44.97, placing smallholder oil palm plantations within the less sustainable category. The findings obtained underscore the pressing need for government intervention and support to improve the sustainability of smallholder oil palm plantations in Indonesia. Addressing these concerns requires comprehensive policy interventions and assistance to advance the sustainability of agricultural practices. Full article
Show Figures

Figure 1

18 pages, 3949 KiB  
Article
Protective Effects of Dietary Vitamin D3, Turmeric Powder, and Their Combination against Gasoline Intoxication in Rats
by Gulfira A. Yestemirova, Zura B. Yessimsiitova and Michael Danilenko
Pharmaceuticals 2024, 17(5), 619; https://doi.org/10.3390/ph17050619 - 10 May 2024
Viewed by 2143
Abstract
The inhalation of gasoline vapors (GV) is associated with developing various pathologies. Particularly, oil refinery and gas station workers are at a greater risk of developing lung cancer, kidney cancer, bladder cancer, and hematological disorders, including acute myeloid leukemia. Therefore, preventing the harmful [...] Read more.
The inhalation of gasoline vapors (GV) is associated with developing various pathologies. Particularly, oil refinery and gas station workers are at a greater risk of developing lung cancer, kidney cancer, bladder cancer, and hematological disorders, including acute myeloid leukemia. Therefore, preventing the harmful effects of GV and alleviating their consequences appear to be important and timely issues. In this study, we investigated the potential of vitamin D3, turmeric powder, and their combination to ameliorate the toxicity of gasoline fumes in rats. Separate groups of animals fed with a standard rodent diet, with or without the supplementation of vitamin D3 (750 IU/kg body weight) and/or turmeric powder (0.5%, w/w, in food), were untreated or treated with GV (11.5 ± 1.3 cm3/h/m3/day) for 30, 60, or 90 days. Changes in the body weight were monitored weekly. Histological, biochemical, and hematological parameters were determined at the end of each treatment period. While the exposure of rats to GV resulted in a time-dependent reduction in body weight, supplementation with vitamin D3, but not with turmeric root powder or their combination, partially prevented weight loss. Macroscopical and histological analyses showed pronounced time-dependent changes in the organs and tissues of GV-treated rats. These included alveolar wall collapse in the lungs, the destruction of the lobular structure and hepatocytolysis in the liver, the shrinkage and fragmentation of glomeruli in the kidneys, and the disorganization of the lymphoid follicles in the spleen. However, co-treatment with the nutritional supplements tested, especially vitamin D3, noticeably alleviated the above conditions. This was accompanied by a significant improvement in the blood chemistry and hematological parameters. Collectively, our results demonstrate that the harmful effects of environmental exposure to GV can be reduced upon supplementation of vitamin D3. The fact that the protective activity of vitamin D3 alone was higher than that of turmeric root powder or the combined treatment suggests that combinations of these supplements may not always be more beneficial than each agent applied separately. Full article
Show Figures

Figure 1

14 pages, 234 KiB  
Article
How Constructionist Perspectives on Learning Can Improve Learning and Prevent Accidents in High-Risk Industries
by Thomas Wold
Challenges 2024, 15(2), 19; https://doi.org/10.3390/challe15020019 - 5 Apr 2024
Cited by 1 | Viewed by 2356
Abstract
Management systems containing procedures, checklists, and descriptions for how various tasks should be conducted are often used in high-risk industries. Much has been written about the judicial and technological concerns of management systems, but less has been written on how to train staff [...] Read more.
Management systems containing procedures, checklists, and descriptions for how various tasks should be conducted are often used in high-risk industries. Much has been written about the judicial and technological concerns of management systems, but less has been written on how to train staff in the use of them. Through a cognitive-constructionist perspective combined with social constructivism, this paper discusses how staff training can be designed to fit the characteristics of the workers. This paper focuses on how people learn in different ways, and how this is related to perspectives on knowledge. The method used is semi-structured interviews with twenty-seven workers in two different companies operating in the oil and gas-producing industry. The workers got only a short web-based theory course on the management system, with no practical exercises, repetitions, or other types of follow-ups. This is a signal that the management system is of less importance, and many of the workers thought they did not need it. Training must be designed to fit the workers, with practical exercises, repetition, and possibilities for on-the-job training. Accidents in this sector can cause human losses and great environmental harm, and this paper argues that better training of staff can prevent such accidents and reduce harm to the environment. Full article
20 pages, 7225 KiB  
Article
Human Digital Twin in Industry 5.0: A Holistic Approach to Worker Safety and Well-Being through Advanced AI and Emotional Analytics
by Saul Davila-Gonzalez and Sergio Martin
Sensors 2024, 24(2), 655; https://doi.org/10.3390/s24020655 - 19 Jan 2024
Cited by 27 | Viewed by 6888
Abstract
This research introduces a conceptual framework designed to enhance worker safety and well-being in industrial environments, such as oil and gas construction plants, by leveraging Human Digital Twin (HDT) cutting-edge technologies and advanced artificial intelligence (AI) techniques. At its core, this study is [...] Read more.
This research introduces a conceptual framework designed to enhance worker safety and well-being in industrial environments, such as oil and gas construction plants, by leveraging Human Digital Twin (HDT) cutting-edge technologies and advanced artificial intelligence (AI) techniques. At its core, this study is in the developmental phase, aiming to create an integrated system that could enable real-time monitoring and analysis of the physical, mental, and emotional states of workers. It provides valuable insights into the impact of Digital Twins (DT) technology and its role in Industry 5.0. With the development of a chatbot trained as an empathic evaluator that analyses emotions expressed in written conversations using natural language processing (NLP); video logs capable of extracting emotions through facial expressions and speech analysis; and personality tests, this research intends to obtain a deeper understanding of workers’ psychological characteristics and stress levels. This innovative approach might enable the identification of stress, anxiety, or other emotional factors that may affect worker safety. Whilst this study does not encompass a case study or an application in a real-world setting, it lays the groundwork for the future implementation of these technologies. The insights derived from this research are intended to inform the development of practical applications aimed at creating safer work environments. Full article
(This article belongs to the Special Issue Feature Papers in the Internet of Things Section 2023)
Show Figures

Figure 1

22 pages, 3324 KiB  
Article
Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment
by Julia Hansson, Sofia Klugman, Tomas Lönnqvist, Nilay Elginoz, Julia Granacher, Pavinee Hasselberg, Fredrik Hedman, Nora Efraimsson, Sofie Johnsson, Sofia Poulikidou, Sahar Safarian and Kåre Tjus
Energies 2024, 17(1), 99; https://doi.org/10.3390/en17010099 - 23 Dec 2023
Cited by 3 | Viewed by 1809
Abstract
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill [...] Read more.
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries). Actual process configuration and low-carbon electricity are critical for overall performance. The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers. For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts. The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or 50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technology readiness level of the gasification technologies, especially wet gasification. However, the studied concept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost. Full article
(This article belongs to the Special Issue Conversion of Biomass to Fuel and Commodity Chemicals)
Show Figures

Figure 1

Back to TopTop