Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = offshore wind power delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4822 KiB  
Article
Black-Start Strategy for Offshore Wind Power Delivery System Based on Series-Connected DRU-MMC Hybrid Converter
by Feng Li, Danqing Chen, Honglin Chen, Shuxin Luo, Hao Yu, Tian Hou, Guoteng Wang and Ying Huang
Electronics 2025, 14(13), 2543; https://doi.org/10.3390/electronics14132543 - 23 Jun 2025
Viewed by 265
Abstract
The series-connected DRU-MMC hybrid converter, with its compact size and cost-effectiveness, presents an attractive solution for long-distance offshore wind power transmission. However, its application is limited by the DRU’s unidirectional power flow and the voltage mismatch between the auxiliary MMC and the onshore [...] Read more.
The series-connected DRU-MMC hybrid converter, with its compact size and cost-effectiveness, presents an attractive solution for long-distance offshore wind power transmission. However, its application is limited by the DRU’s unidirectional power flow and the voltage mismatch between the auxiliary MMC and the onshore MMC during black-start operations. To overcome these challenges, a four-stage black-start strategy utilizing an auxiliary step-down transformer connected to the onshore MMC is proposed. The proposed strategy operates as follows: The onshore MMC first lowers its valve-side voltage via an auxiliary transformer, enabling reduced DC-side voltage. With the DRU bypassed, the offshore MMC draws startup power through the DC link, then switches to V/f mode with wind turbine curtailment to reduce DC current below the DRU bypass threshold. After stable, low-power operation, the DRU is integrated. The onshore MMC then restores rated DC voltage and disconnects the transformer, allowing gradual wind turbine reconnection to complete black-start. The simulation results confirm the approach’s feasibility under conditions where all wind turbines operate in grid-following mode. Full article
Show Figures

Figure 1

24 pages, 2174 KiB  
Article
Diode Rectifier-Based Low-Cost Delivery System for Marine Medium Frequency Wind Power Generation
by Tao Xia, Yangtao Zhou, Qifu Zhang, Haitao Liu and Lei Huang
J. Mar. Sci. Eng. 2025, 13(6), 1062; https://doi.org/10.3390/jmse13061062 - 28 May 2025
Viewed by 387
Abstract
Offshore wind power has a broad development prospect, but with the development of offshore wind farms to the deep sea, the traditional high-voltage AC transmission has been difficult to adapt to the offshore wind power transmission distance and transmission capacity needs. A flexible [...] Read more.
Offshore wind power has a broad development prospect, but with the development of offshore wind farms to the deep sea, the traditional high-voltage AC transmission has been difficult to adapt to the offshore wind power transmission distance and transmission capacity needs. A flexible DC transmission system applying modular multilevel converter is a common scheme for offshore wind power, which has been put into use in actual projects, but it is still facing the problems of high cost of offshore converter station platforms and high loss of collector systems. In order to improve the economy and reliability of the medium- and long-distance offshore wind power delivery systems, this paper proposes a diode rectifier-based medium-frequency AC pooling soft-direct low-cost delivery system for medium- and long-distance offshore wind power. Firstly, the mid-frequency equivalent model of the diode converter is established, and the influence of topology and frequency enhancement on the parameters of the main circuit equipment is analysed; then, the distribution parameters and transmission capacity of the mid-frequency cable are calculated based on the finite element modelling of the marine cable, and the transmission losses of the mid-frequency AC pooling system are then calculated, including the collector losses, converter valve losses, and transformer losses, etc. Finally, an economic analysis is carried out based on a specific example, comparing with the Jiangsu Rudong offshore wind power transmission project, in order to verify the economy of the medium-frequency AC flexible and direct transmission system of the medium- and long-distance offshore wind power using diode rectifier technology. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

15 pages, 1980 KiB  
Article
Optimal Multiple Wind Power Transmission Schemes Based on a Life Cycle Cost Analysis Model
by Xiaotong Ji, Dan Liu, Heng Luo, Ping Xiong, Daojun Tan, Pan Hu, Hengrui Ma and Bo Wang
Processes 2024, 12(8), 1594; https://doi.org/10.3390/pr12081594 - 30 Jul 2024
Viewed by 1777
Abstract
Due to the high cost and complex challenges faced by offshore wind power transmission, economic research into offshore wind power transmission can provide a scientific basis for optimal decision-making on offshore wind power projects. Based on the analysis of the topology structure and [...] Read more.
Due to the high cost and complex challenges faced by offshore wind power transmission, economic research into offshore wind power transmission can provide a scientific basis for optimal decision-making on offshore wind power projects. Based on the analysis of the topology structure and characteristics of typical wind power transmission schemes, this paper compares the economic benefits of five different transmission schemes with a 3.6 GW sizeable onshore wind farm as the primary case. Research includes traditional high voltage alternating current (HVAC), voltage source converter high voltage direct current transmission (VSC-HVDC), a fractional frequency transmission system (FFTS), and two hybrid DC (MMC-LCC and DR-MMC) transmission scenarios. The entire life cycle cost analysis model (LCCA) is employed to thoroughly assess the cumulative impact of initial investment costs, operational expenses, and eventual scrap costs on top of the overall transmission scheme’s total cost. This comprehensive evaluation ensures a nuanced understanding of the financial implications across the project’s entire lifespan. In this example, HVAC has an economic advantage over VSC-HVDC in the transmission distance range of 78 km, and the financial range of a FFTS is 78–117 km. DR-MMC is better than the flexible DC delivery scheme in terms of transmission capacity, scalability, and offshore working platform construction costs in the DC delivery scheme. Therefore, the hybrid DC delivery scheme of offshore wind power composed of multi-type converters has excellent application prospects. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 1800 KiB  
Article
Techno-Economic Assessment of a Full-Chain Hydrogen Production by Offshore Wind Power
by Jinyong Lei, Hang Zhang, Jun Pan, Yu Zhuo, Aijun Chen, Weize Chen, Zeyu Yang, Keying Feng, Lincai Li, Bowen Wang, Lili Jiao and Kui Jiao
Energies 2024, 17(11), 2447; https://doi.org/10.3390/en17112447 - 21 May 2024
Cited by 7 | Viewed by 3092
Abstract
Offshore wind power stands out as a promising renewable energy source, offering substantial potential for achieving low carbon emissions and enhancing energy security. Despite its potential, the expansion of offshore wind power faces considerable constraints in offshore power transmission. Hydrogen production derived from [...] Read more.
Offshore wind power stands out as a promising renewable energy source, offering substantial potential for achieving low carbon emissions and enhancing energy security. Despite its potential, the expansion of offshore wind power faces considerable constraints in offshore power transmission. Hydrogen production derived from offshore wind power emerges as an efficient solution to overcome these limitations and effectively transport energy. This study systematically devises diverse hydrogen energy supply chains tailored to the demands of the transportation and chemical industries, meticulously assessing the levelized cost of hydrogen (LCOH). Our findings reveal that the most cost-efficient means of transporting hydrogen to the mainland is through pipelines, particularly when the baseline distance is 50 km and the baseline electricity price is 0.05 USD/kWh. Notably, delivering hydrogen directly to the port via pipelines for chemical industries proves considerably more economical than distributing it to hydrogen refueling stations, with a minimal cost of 3.6 USD/kg. Additionally, we assessed the levelized cost of hydrogen (LCOH) for supply chains that transmit electricity to ports via submarine cables before hydrogen production and subsequent distribution to chemical plants. In comparison to offshore hydrogen production routes, these routes exhibit higher costs and reduced competitiveness. Finally, a sensitivity analysis was undertaken to scrutinize the impact of delivery distance and electricity prices on LCOH. The outcomes underscore the acute sensitivity of LCOH to power prices, highlighting the potential for substantial reductions in hydrogen prices through concerted efforts to lower electricity costs. Full article
(This article belongs to the Special Issue Applications of Microfluidic Power Systems)
Show Figures

Figure 1

21 pages, 3816 KiB  
Article
Standardization of Power-from-Shore Grid Connections for Offshore Oil & Gas Production
by Tiago A. Antunes, Rui Castro, Paulo J. Santos and Armando J. Pires
Sustainability 2023, 15(6), 5041; https://doi.org/10.3390/su15065041 - 12 Mar 2023
Cited by 3 | Viewed by 3081
Abstract
Offshore oil and gas (O&G) production is typically powered by local diesel engines or gas turbines. Power-from-shore (PFS) is an alternative that takes advantage of onshore renewable production and reduces greenhouse emissions but is limited to bespoke projects that are tailored to the [...] Read more.
Offshore oil and gas (O&G) production is typically powered by local diesel engines or gas turbines. Power-from-shore (PFS) is an alternative that takes advantage of onshore renewable production and reduces greenhouse emissions but is limited to bespoke projects that are tailored to the characteristics of each site. This lack of repetition leads to an increase in the construction risk, delivery time, and lifecycle costs, therefore limiting their large-scale deployment. Furthermore, the absence of standardized designs is also notorious in mature applications such as offshore wind farms (OWF) despite their long-standing track record, with the negative consequences extensively covered in the literature. This research paper addresses offshore transmission standardization in two parts. First, by providing the scientific community with a review of the existing offshore O&G production and substations and secondly, by outlining a lean optioneering algorithm for the cost-optimized and technically feasible selection of the key design criteria. The exercise is centred on the main limiting component of the transmission systems—the cables. As such, it addresses their operational range and the cost to calculate the most effective configuration in terms of voltage and rated power. The end goal, based on the spread of connection proposals, is to cluster the candidates to a limited set of grid connection options, the achievement of which the model has been shown to be adequate. Full article
(This article belongs to the Special Issue Sustainable Integration of Renewable Power Generation Systems)
Show Figures

Figure 1

22 pages, 1996 KiB  
Review
A Review on Multi-Terminal High Voltage Direct Current Networks for Wind Power Integration
by Luís F. Normandia Lourenço, Amira Louni, Gilney Damm, Mariana Netto, Monssef Drissi-Habti, Samuele Grillo, Alfeu J. Sguarezi Filho and Lasantha Meegahapola
Energies 2022, 15(23), 9016; https://doi.org/10.3390/en15239016 - 29 Nov 2022
Cited by 2 | Viewed by 2576
Abstract
With the growing pressure to substitute fossil fuel-based generation, Renewable Energy Sources (RES) have become one of the main solutions from the power sector in the fight against climate change. Offshore wind farms, for example, are an interesting alternative to increase renewable power [...] Read more.
With the growing pressure to substitute fossil fuel-based generation, Renewable Energy Sources (RES) have become one of the main solutions from the power sector in the fight against climate change. Offshore wind farms, for example, are an interesting alternative to increase renewable power production, but they represent a challenge when being interconnected to the grid, since new installations are being pushed further off the coast due to noise and visual pollution restrictions. In this context, Multi-Terminal High Voltage Direct Current (MT-HVDC) networks are the most preferred technology for this purpose and for onshore grid reinforcements. They also enable the delivery of power from the shore to offshore Oil and Gas (O&G) production platforms, which can help lower the emissions in the transition away from fossil fuels. In this work, we review relevant aspects of the operation and control of MT-HVDC networks for wind power integration. The review approaches topics such as the main characteristics of MT-HVDC projects under discussion/commissioned around the world, rising challenges in the control and the operation of MT-HVDC networks and the modeling and the control of the Modular Multilevel Converter (MMC) stations. To illustrate the challenges on designing the control system of a MT-HVDC network and to corroborate the technical discussions, a simulation of a three-terminal MT-HVDC network integrating wind power generation and offshore O&G production units to the onshore grid is performed in Matlab’s Simscape Electrical toolbox. The results highlight the main differences between two alternatives to design the control system for an MT-HVDC network. Full article
Show Figures

Figure 1

15 pages, 3182 KiB  
Article
Joint Planning of Offshore Wind Power Storage and Transmission Considering Carbon Emission Reduction Benefits
by Honglin Chen, Hao Yu, Xiaojuan Yang, Yong Lin, Suhua Lou and Sui Peng
Energies 2022, 15(20), 7599; https://doi.org/10.3390/en15207599 - 14 Oct 2022
Cited by 8 | Viewed by 1931
Abstract
There are two situations of transmission redundancy and transmission congestion when large-scale offshore wind farms send power out. The energy storage system can store the power blocked by wind power due to insufficient transmission capacity and release it in the period when the [...] Read more.
There are two situations of transmission redundancy and transmission congestion when large-scale offshore wind farms send power out. The energy storage system can store the power blocked by wind power due to insufficient transmission capacity and release it in the period when the wind power output level is low. In this paper, a full-life-cycle cost model is established for energy storage, and a joint planning model for offshore wind power storage and transmission considering carbon emission reduction benefits is established, which integrates power grid transmission benefits, carbon emission reduction benefits, energy storage construction costs, transmission project construction costs and wind abandonment penalty costs. The channel construction and energy storage configuration scheme with the greatest net benefit can be obtained. The relationship between the transmission channel capacity setting and the energy storage parameter configuration under this model is studied, and the combined effect of transmission channel and energy storage system in improving the level of wind power transmission is analyzed. The sensitivity analysis of the influence of the optimal storage and transmission planning scheme of the offshore wind farms is carried out from the perspectives of transmission line engineering cost and transmission channel curve type. Full article
(This article belongs to the Special Issue Theoretical and Technical Challenges in Offshore Wind Power)
Show Figures

Graphical abstract

22 pages, 6921 KiB  
Article
Analysis of a Gyroscopic-Stabilized Floating Offshore Hybrid Wind-Wave Platform
by Beatrice Fenu, Valentino Attanasio, Pietro Casalone, Riccardo Novo, Giulia Cervelli, Mauro Bonfanti, Sergej Antonello Sirigu, Giovanni Bracco and Giuliana Mattiazzo
J. Mar. Sci. Eng. 2020, 8(6), 439; https://doi.org/10.3390/jmse8060439 - 15 Jun 2020
Cited by 34 | Viewed by 6078
Abstract
The energy innovation scenario sees hybrid wind-wave platforms as a promising technology for reducing the variability of the power output and for the minimization of the cost of offshore marine renewable installations. This article presents a model that describes the installation of a [...] Read more.
The energy innovation scenario sees hybrid wind-wave platforms as a promising technology for reducing the variability of the power output and for the minimization of the cost of offshore marine renewable installations. This article presents a model that describes the installation of a 5 MW wind turbine on a floating platform designed by Fincantieri and equipped with gyroscopic stabilization. The use of gyros allows for the delivery of platform stabilization by damping the wave and wind induced motion on the floater and at the same time producing extra power. Shetland Island was chosen as the reference site because of its particularly harsh weather. Final results show that the total production of power in moderate and medium climate conditions is considerable thanks to the installation of the gyro, together with a significant stabilization of the platform in terms of pitching angle and nacelle acceleration. Full article
Show Figures

Figure 1

Back to TopTop