Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = off-site reservoir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2599 KiB  
Article
Impacts of Best Management Practices on Runoff, Soil Loss, and Sediment Yield in the Megech Watershed, Ethiopia
by Mulugeta Admas, Assefa M. Melesse, Brook Abate and Getachew Tegegne
Water 2023, 15(4), 788; https://doi.org/10.3390/w15040788 - 17 Feb 2023
Cited by 7 | Viewed by 3544
Abstract
This study evaluated the best management practices on how to manage soil losses from catchment and reduce sediment load into a dam reservoir. This study aimed to evaluate the relationship of runoff, soil loss, and sediment yield with best management practice (BMP) scenarios [...] Read more.
This study evaluated the best management practices on how to manage soil losses from catchment and reduce sediment load into a dam reservoir. This study aimed to evaluate the relationship of runoff, soil loss, and sediment yield with best management practice (BMP) scenarios in the GeoWEPP environment for the selected three micro-watersheds (hot spot areas) in the Megech watershed, upper Blue Nile Basin. The impacts of four agricultural BMP scenarios, including forest five years old, corn, soybean; wheat, alfalfa (4 yr) no till; corn, soybean, wheat, alfalfa (4 yr) conservation till; and winter wheat mulch till, on soil loss, runoff, and sediment yield were quantified. The results revealed that soil loss ranges between 41.45–66.11 t/ha/year and sediment yield rates ranges between 36.5–54.8 t/ha/year with the baseline situation (conventional tillage condition) were found to be higher than the tolerable soil loss (10 t/ha/year) in the region. Implementing BMPs on the crop land of the micro-watersheds has positive impacts on all variables’ runoff, soil loss, and sediment yield reductions. Among the implemented BMPs, forests with a five-year perennial (agroforestry) option showed the highest rate of reduction for all runoff, soil loss, and sediment yield, but no cost benefit analysis was included in this study to choose among the BMPs. This study also identified that agricultural BMPs play a great role in reducing runoff, soil loss, and sediment yield in the Megech watershed to minimize on- and off-site impacts. In general, it is important to consider how cost benefit analysis will change throughout project’s implementation among the selected BMP scenarios at the watershed level in the future. Full article
Show Figures

Figure 1

19 pages, 8011 KiB  
Article
Combining Soil Erosion Modeling with Connectivity Analyses to Assess Lateral Fine Sediment Input into Agricultural Streams
by Ronald E. Poeppl, Lina A. Dilly, Stefan Haselberger, Chris S. Renschler and Jantiene E.M. Baartman
Water 2019, 11(9), 1793; https://doi.org/10.3390/w11091793 - 28 Aug 2019
Cited by 18 | Viewed by 5315
Abstract
Soil erosion causes severe on- and off-site effects, including loss of organic matter, reductions in soil depth, sedimentation of reservoirs, eutrophication of water bodies, and clogging and smothering of spawning habitats. The involved sediment source-mobilization-delivery process is complex in space and time, depending [...] Read more.
Soil erosion causes severe on- and off-site effects, including loss of organic matter, reductions in soil depth, sedimentation of reservoirs, eutrophication of water bodies, and clogging and smothering of spawning habitats. The involved sediment source-mobilization-delivery process is complex in space and time, depending on a multiplicity of factors that determine lateral sediment connectivity in catchment systems. Shortcomings of soil erosion models and connectivity approaches call for methodical improvement when it comes to assess lateral sediment connectivity in agricultural catchments. This study aims to (i) apply and evaluate different approaches, i.e., Index of Connectivity (IC), the Geospatial Interface for Water Erosion Prediction Project (GeoWEPP) soil erosion model, field mapping and (ii) test a connectivity-adapted version of GeoWEPP (i.e., “GeoWEPP-C”) in the context of detecting hot-spots for soil erosion and lateral fine sediment entry points to the drainage network in a medium-sized (138 km2) agricultural catchment in Austria, further discussing their applicability in sediment management in agricultural catchments. The results revealed that (a) GeoWEPP is able to detect sub-catchments with high amount of soil erosion/sediment yield that represent manageable units in the context of soil erosion research and catchment management; (b) the combination of GeoWEPP modeling and field-based connectivity mapping is suitable for the delineation of lateral (i.e., field to stream) fine sediment connectivity hotspots; (c) the IC is a useful tool for a rapid Geographic Information System (GIS)-based assessment of structural connectivity. However, the IC showed significant limitations for agricultural catchments and functional aspects of connectivity; (d) the process-based GeoWEPP-C model can be seen as a methodical improvement when it comes to the assessment of lateral sediment connectivity in agricultural catchments. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

15 pages, 4362 KiB  
Article
Applying a Watershed and Reservoir Model in an Off-Site Reservoir to Establish an Effective Watershed Management Plan
by Chi-Feng Chen, Yi-Ru Wu and Jen-Yang Lin
Processes 2019, 7(8), 484; https://doi.org/10.3390/pr7080484 - 1 Aug 2019
Cited by 3 | Viewed by 3201
Abstract
Off-site reservoirs use water from other watersheds to supplement their water quantity. Water quality is usually better in off-site reservoirs than in onsite reservoirs, because in comparison to onsite reservoirs, watershed areas are smaller and fewer pollutants are collected; moreover, cleaner water is [...] Read more.
Off-site reservoirs use water from other watersheds to supplement their water quantity. Water quality is usually better in off-site reservoirs than in onsite reservoirs, because in comparison to onsite reservoirs, watershed areas are smaller and fewer pollutants are collected; moreover, cleaner water is introduced. However, in Taiwan, the water quality of some off-site reservoirs can gradually worsen, and this factor needs to be addressed. In this study, the Liyutan reservoir in central Taiwan was used as an example to demonstrate the process of evaluating pollution in an off-site reservoir. Pollution loads from point sources (PSs) and nonpoint sources (NPSs) were carefully estimated. Domestic sewage and tourist wastewater were considered the major PS loads in this study. The NPS load evaluation was dependent on the results of a verified watershed model, the stormwater management model (SWMM). The observed data in 2015 and 2016 and supplementary total phosphorous (TP) samplings in upstream rivers in 2018 were used to validate the model results. Model calibration and verification were implemented during dry weather and wet weather to ensure the accuracy of the PS and NPS simulations. The results of this study showed that the average total phosphorous (TP) load generated from within the watershed was 9013 kg/y, and that the TP load from outside the watershed was 4545 kg/y. The percentages of TP loads from NPSs and PSs in the watershed were 83% and 17%, respectively. Finally, we used a verified Vollenweider model to convert the TP loads to the TP concentration in the reservoir. The pollution reduction measures and the associated predicted water quality values were assessed using the verified models. Full article
(This article belongs to the Special Issue Water Quality Modelling)
Show Figures

Figure 1

Back to TopTop